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Introduction 
 

This book is focus on description of data and analysis of data with help you 

understand and learn exactly what you need to know about statistical ideas 

and techniques, fundamental formulas and calculations and statistical core 

topics in scope of applications. The book is mainly based on the following 

two illustration figures to extend the statistic contents.  

 
 Qualities  
 (Categorical) 

   
        Discrete 

Data    Quantities     

 (Numerical)    Continuous 
          
 
    Rank Data 
    (Ordinal Data) 
 
 
       Central Tendency 
                                  Descriptive Statistics 

     Dispersion 
Statistics 

      Parameter Estimation  
 Inferential Statistics 

       Significance Testing 

 

For your better and/or easier understanding, this book includes more than 

forty examples in explanation and/or illustration, step by step, to let you 

understand or have ideas to understand on how and why the statistic formula 

and calculation be applied.  
 

It is assumed that you’ve had a basic algebra background and can do some 

of the basic mathematical operations and understand some of basic notation 

used in algebra like x, y, summation sign, taking the square root, squaring a 

number, and so on.  
 

About the Author 

Charles Cheng Xia is a statistics and health educator with his Medical Doctor and Master 

of Public Health degree. His primary research interest lies in epidemiology, health 

economics and complex disease dynamics inferred from data science and mathematical 

modeling. Email: xc7788@gmail.com 
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Inferential  Poisson distribution      94 
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   Linear regression      124 
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Chapter 1 
 
 

Fundamental Concepts 
 

What is Statistics? 
 

Statistics is the discipline that concerns the collection, organization, analysis, 

interpretation and presentation of data. A common aim of statistical analysis 

is to produce information about some chosen population. 
 

Statistics include the four aspects: 
 

1. Design: A proper statistical design is crucial for making sure the data 

that will enter the decision making process is of sufficient quality and 

thus the causal inference and/or estimation will be valid. 

 

2. Collection of data: The collection of data is based on the statistics 

design to fulfill the statistics tasks with the research problem you 

explore informs; the type of data you'll collect; and the data collection 

method you'll use. 

 

3. Sorting data: Data sorting is any process that involves arranging the 

data into some meaningful order to make it easier to understand, 

analyze or visualize. 

 

4. Analysis of data: Statistical data analysis is a procedure of performing 

various statistical operations. It is a kind of quantitative research, 

which seeks to quantify the data, and typically, applies some form of 

statistical analysis. Quantitative data basically involves descriptive 

data, such as survey data and observational data. 
 
 

This book is focus on description of data and analysis of data with help you 

understand and learn exactly what you need to know about statistical ideas 

and techniques, fundamental formulas and calculations and core topics in 

scope of applications. 
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Statistical Population 
 

A population is a set of similar items or events which is of interest for some 

question or experiment. A statistical population can be a group of existing 

objects (e.g. the set of all stars within the Milky Way galaxy) or a 

hypothetical and potentially infinite group of objects conceived as a 

generalization from experience (e.g. the set of all possible hands in a game 

of poker).  
 
 

Statistical Sample 
 

In statistical inference, a subset of the population (a statistical sample) is 

chosen to represent the population in a statistical analysis. The ratio of the 

size of this statistical sample to the size of the population is called a 

sampling fraction. It is then possible to estimate the population parameters 

using the appropriate sample statistics. 

 

In statistics and quantitative research methodology, a sample is a set of 

individuals or objects collected or selected from a statistical population by a 

defined procedure. The elements of a sample are known as sample points, 

sampling units or observations.[citation needed] When conceived as a data 

set, a sample is often denoted by capital roman letters such X and Y, with its 

elements expressed in lower-case (e.g.,x3) and the sample size denoted by 

the letter n. 

 

Typically, the population is very large, making a census or a complete 

enumeration of all the individuals in the population either impractical or 

impossible. The sample usually represents a subset of manageable size. 

Samples are collected and statistics are calculated from the samples, so that 

one can make inferences or extrapolations from the sample to the 

population. 

 

The sample may be drawn from a population without replacement (i.e. no 

element can be selected more than once in the same sample), in which case it 

is a subset of a population; or with replacement (i.e. an element may appear 

multiple times in the one sample), in which case it is a multisubset. 
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Key points:  

1. A selection that is chosen randomly (purely by chance, with no 

predictability). 

 

2. Every member of the population being studied should have an equal 

chance of being selected. 
 

Example: you want to survey 100 people at a football match about their 

main job. Asking just people in one area might give poor results as there 

may be a group of workmates there! So instead you can make a list using 

randomly chosen seat numbers from the whole stadium, then go and find 

each seat and interview the person there. 
 
 
 

Mathematical Description of Random Sample 
 

In mathematical terms, given a probability distribution F, a random sample 

of length n (where n may be any positive integer) is a set of realizations of n 

independent, identically distributed random variables with distribution F. 

 

A sample concretely represents the results of n experiments in which the 

same quantity is measured. For example, if we want to estimate the average 

height of members of a particular population, we measure the heights of n 

individuals. Each measurement is drawn from the probability distribution F 

characterizing the population, so each measured height xi is the realization 

of a random variable Xi with distribution F. Note that a set of random 

variables (i.e., a set of measurable functions) must not be confused with the 

realizations of these variables (which are the values that these random 

variables take).  
 
 
 

Statistical Estimator 
 

In statistics, an estimator is a rule for calculating an estimate of a given 

quantity based on observed data: thus the rule (the estimator), the quantity of 

interest (the estimand) and its result (the estimate) are distinguished. 
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Point and Interval Estimators 
 

There are point and interval estimators. The point estimators yield single-

valued results, although this includes the possibility of single vector-valued 

results and results that can be expressed as a single function. This is in 

contrast to an interval estimator, where the result would be a range of 

plausible values (or vectors or functions). 

 

Estimation theory is concerned with the properties of estimators; that is, with 

defining properties that can be used to compare different estimators 

(different rules for creating estimates) for the same quantity, based on the 

same data. Such properties can be used to determine the best rules to use 

under given circumstances.  
 

However, in robust statistics, statistical theory goes on to consider the 

balance between having good properties, if tightly defined assumptions hold, 

and having less good properties that hold under wider conditions. 

 

An "estimator" or "point estimate" is a statistic (that is, a function of the 

data) that is used to infer the value of an unknown parameter in a statistical 

model. The parameter being estimated is sometimes called the estimand. It 

can be either finite-dimensional (in parametric and semi-parametric models), 

or infinite-dimensional (semi-parametric and non-parametric models). 
 
 

Statistical Range 
 

In statistics, the range of a set of data is the difference between the largest 

and smallest values. It can give you a rough idea of how the outcome of the 

data set will be before you look at it actually Difference here is specific, the 

range of a set of data is the result of subtracting the smallest value from 

largest value. 

 

However, in descriptive statistics, this concept of range has a more complex 

meaning. The range is the size of the smallest interval (statistics) which 

contains all the data and provides an indication of statistical dispersion. It is 

measured in the same units as the data. Since it only depends on two of the 

observations, it is most useful in representing the dispersion of small data 

sets. 
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Types of Statistics: 
 
       Central Tendency 
                                  Descriptive Statistics 

     Dispersion 
Statistics 

      Parameter Estimation  
 Inferential Statistics 

       Significance Testing 
 

Two types of statistical methods are used in analyzing data: descriptive 

statistics and inferential statistics. Descriptive statistics are used to synopsize 

data from a sample exercising the mean or standard deviation. Inferential 

statistics are used when data is viewed as a subclass of a specific population. 
 
 

Descriptive Statistics 
 

Descriptive statistics refer to the analysis of the data that will help you 

describe, summarize, or show the data in a way that some patterns might 

emerge. However, you need to be aware that you shouldn't withdraw 

conclusions besides the data analyzed. You should be simply describing the 

data you got. 

 

Despite this might not seem important, it really has a crucial part in the 

process since it allows you to visualize huge data in a simple and effective 

way. 

 

Imagine that you wanted to analyze the performance on a test of 100 

students. You might be interested in seeing the overall performance or you 

might be interested in looking at the spread or distribution of their marks. 

When you use the descriptive statistics, you should present your data by 

starting with a table that summarizes the group data, followed by charts and 

graphs. Finally, at the end, you should add the statistical commentary like 

the discussion of the results. 
 
 

Inferential Statistics 
 

There are many occasions when you want to analyze a specific group but 

you simply can't have a sample of the entire population. Unlike on the 

previous example, you wanted to analyze the performance of 100 students, 
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in this case, you might want to measure the performance of all the students 

in a country. Since it's not doable to collect all the data, you need to choose a 

smaller sample of students, which will represent all the students in that 

country.  

 

And this is where the inferential statistics have their crucial role. They refer 

to the techniques that you use that allow you to use the samples to make 

generalized comments regarding the entire population. So, as you 

understand, it's very important to be careful when selecting the sample that 

represents the population. It needs to be as accurate as it can or the results 

won't represent the truth.  

The descriptive and inferential statistics have one thing in common: they 

both rely on the same data. However, while the descriptive statistics only 

relies on this particular data, the inferential statistics relies on this data to 

make general conclusions about a larger population.  

 

A descriptive statistic (in the count noun sense) is a summary statistic that 

quantitatively describes or summarizes features from a collection of 

information, while descriptive statistics (in the mass noun sense) is the 

process of using and analyzing those statistics. Descriptive statistics is 

distinguished from inferential statistics (or inductive statistics) by its aim to 

summarize a sample, rather than use the data to learn about the population 

that the sample of data is thought to represent. This generally means that 

descriptive statistics, unlike inferential statistics, is not developed on the 

basis of probability theory, and are frequently non-parametric statistics. 

Even when a data analysis draws its main conclusions using inferential 

statistics, descriptive statistics are generally also presented. For example, in 

papers reporting on human subjects, typically a table is included giving the 

overall sample size, sample sizes in important subgroups (e.g., for each 

treatment or exposure group), and demographic or clinical characteristics 

such as the average age, the proportion of subjects of each sex, the 

proportion of subjects with related co-morbidities, etc. 

 

So, which one should you choose to use? You may need to use both types of 

statistics and the answer depends on the purpose of your research. For 

example, when a company is trying to show if a new medicine will be able 

to help patients in the future, it's in their best interest that they use inferential 

statistics. If they decide to use descriptive statistics, they won't be able to 

withdraw any conclusions regarding the population in general but simply 

regarding the patients that participated in the study. 
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What Is Data? 
 

Statistics deals with every aspect of data, including the planning of data 

collection in terms of the design of surveys and experiments. 

 

Data are characteristics or information. In a more technical sense, data are a 

set of values of qualitative or quantitative variables about one or more 

persons or objects, while a datum (singular of data) is a single value of a 

single variable. 

 

Data are measured, collected and reported, and analyzed, whereupon it can 

be visualized using graphs, images or other analysis tools. Data as a general 

concept refers to the fact that some existing information or knowledge is 

represented or coded in some form suitable for better usage or processing.  

 

The idea of a research study is to generate data that should answer the 

research question being posed. Sometimes a lot of data is generated. It is 

important that the data collected is stored and used efficiently and it is 

unethical not to do this. 

 

In academic treatments of the subject, however, data are simply units of 

information. Data are employed in scientific research, businesses 

management (e.g., sales data, revenue, profits, stock price), finance, 

governance (e.g., crime rates, unemployment rates, literacy rates), and in 

virtually every other form of human organizational activity (e.g., censuses of 

the number of homeless people by non-profit organizations). 

 

Raw data ("unprocessed data") is a collection of numbers or characters 

before it has been "cleaned" and corrected by researchers. Raw data needs to 

be corrected to remove outliers or obvious instrument or data entry errors 

(e.g., a thermometer reading from an outdoor Arctic location recording a 

tropical temperature).  

 

Data processing commonly occurs by stages, and the "processed data" from 

one stage may be considered the "raw data" of the next stage. Field data is 

raw data that is collected in an uncontrolled "in situ" environment. 

Experimental data is data that is generated within the context of a scientific 

investigation by observation and recording. 
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Both descriptive and inferential statistics need to rely on some functions of 

the data. In the case of the descriptive statistics, it tends to rely on some 

classic statistics like the mean, standard deviation, min, max, skew, median, 

and kurtosis. In the case of the inferential statistics, they tend to use some 

classic statistics like the z score, t score, F-ratio, among others. 
 
 

Numbers 
 

In statistics, numbers divided into two categories: 
            
   Absolute numbers or values  
 
Numbers           Percentages, rates  
   Relative numbers or values     Ratios, proportions  
            Fractions 
 

Absolute numbers or values are the real/precise numbers, for example, 5 

apples. 

 

 

Relative numbers or values are dependent on other numbers. In other words, 

they are relative to other (absolute) numbers. Most often, those other 

absolute numbers are not even given. For example 2 in 5 cars drive too fast 

on a road. You still do not know the precise number of cars that drove too 

fast. 

 

 

Percentages and fractions are relative.  

 

With percentages and fractions, you do not know the precise number, only 

which part. So in the example above you could have used 40% or 2/5 of the 

cars. 

 

Fraction looks absolute. Let's look at a carton of milk with a contents of a 

1/2 litre. Is a half litre absolute? You can measure it in a measuring cylinder. 

Remember that when you buy a 2 litre carton of milk, the 2 is also absolute. 

The fraction seems to be absolute because it is a precise amount. But the 

fraction relates to the 'litre' behind it and is therefore relative. 
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Frequency 
 

The frequency is the number of times a particular value for a variable (data 

item) has been observed to occur. The frequency of a value can be expressed 

in different ways, depending on the purpose required. 

 

The absolute frequency describes the number of times a particular value for 

a variable (data item) has been observed to occur. The simplest way to 

express a frequency is in absolute terms. 

 

A relative frequency describes the number of times a particular value for a 

variable (data item) has been observed to occur in relation to the total 

number of values for that variable.  

 

The relative frequency is calculated by dividing the absolute frequency by 

the total number of values for the variable. Ratios, rates, proportions and 

percentages are different ways of expressing relative frequencies. 
 

Percentage 
 

A percentage expresses a value for a variable in relation to a whole 

population as a fraction of one hundred. The percentage total of an entire 

dataset should always add up to 100, as 100% represents the total, it is equal 

to the “whole”.  

 

A percentage is calculated by dividing the number of times a particular value 

for a variable has been observed, by the total number of observations in the 

population, then multiplying this number by 100. 

 

For example, in a total of 20 coin tosses where there are 12 heads and 8 tails, 

the percentage of heads is 60% (12 divided by 20, multiplied by 100). 

Alternatively, the percentage of tails is 40% (8 divided by 20, multiplied by 

100). 
 

Ratio 
 

A ratio compares the frequency of one value for a variable with another 

value for the variable. The first value identified in a ratio must be to the left 

of the colon (:) and the second value must be to the right of the colon (1st 

value: 2nd value). 
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For example, in a total of 20 coin tosses where there are 12 heads and 8 tails, 

the ratio of heads to tails is 12:8. Alternatively, the ratio of tails to heads is 

8:12. 
 

Rate 
 

A rate is a measurement of one value for a variable in relation to another 

measured quantity. 

 

For example, in a total of 20 coin tosses where there are 12 heads and 8 tails, 

the rate is 12 heads per 20 coin tosses. Alternatively, the rate is 8 tails per 20 

coin tosses. 
 

Proportion 
 

A proportion describes the share of one value for a variable in relation to a 

whole. It is calculated by dividing the number of times a particular value for 

a variable has been observed, by the total number of values in the 

population. 

 

For example, in a total of 20 coin tosses where there are 12 heads and 8 tails, 

the proportion of heads is 0.6 (12 divided by 20). Alternatively, the 

proportion of tails is 0.4 (8 divided by 20). 
 
 

Data Classification 
 

In statistics, most data fall into one of three groups: numerical, categorical, 

or rank data.  
 

 Qualities  
 (Categorical) 

   
         Discrete 

      Data   Quantities     
   (Numerical)   Continuous 

          
      Rank Data 
      (Ordinal Data) 
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Qualities, Categorical Data or Enumeration Data 
 

Qualitative properties are properties that are observed and can generally not 

be measured with a numerical result. They are contrasted to quantitative 

properties which have numerical characteristics.  

 

Qualitative data are also a categorical data when working with statistics. 

Qualitative data represent characteristics such as a person's gender, marital 

status, hometown, or the types of movies they like. Qualitative data can take 

on numerical values (such as “1” indicating male and “2” indicating female), 

but those numbers don’t have mathematical meaning. You couldn’t add 

them together, therefore it could be called the enumeration data in statistics. 

 

Categorical data is the statistical data type consisting of categorical variables 

or of data that has been converted into that form, for example as grouped 

data. More specifically, categorical data may derive from observations made 

of qualitative data that are summarized as counts or cross tabulations, or 

from observations of quantitative data grouped within given intervals. Often, 

purely categorical data are summarized in the form of a contingency table. 

However, particularly when considering data analysis, it is common to use 

the term "categorical data" to apply to data sets that, while containing some 

categorical variables, may also contain non-categorical variables. 

 

In statistics, a categorical variable is a variable that can take on one of a 

limited, and usually fixed, number of possible values, assigning each 

individual or other unit of observation to a particular group or nominal 

category on the basis of some qualitative property.  

 

In computer science and some branches of mathematics, categorical 

variables are referred to as enumerations or enumerated types. Commonly 

(though not in this article), each of the possible values of a categorical 

variable is referred to as a level. The probability distribution associated with 

a random categorical variable is called a categorical distribution. 

 

Examples of categorical variables: 

The blood type of a person: A, B, AB or O. 

The type of a rock: igneous, sedimentary or metamorphic. 

The identity of a particular word (e.g., in a language model): One of V 

possible choices, for a vocabulary of size V. 
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Quantity Data or Measurement Data 
 

Quantity, statisticians also call quantity data numerical data, is a property 

that can exist as a multitude or magnitude, which illustrate discontinuity and 

continuity. Along with analyzing its nature and classification, the issues of 

quantity involve such closely related topics as dimensionality, equality, 

proportion, the measurements of quantities, the units of measurements, 

number and numbering systems, the types of numbers and their relations to 

each other as numerical ratios. Quantity data may be also called the 

measurement data. 

 

Quantitative properties have numerical characteristics. Quantities can be 

compared in terms of "more", "less", or "equal", or by assigning a numerical 

value in terms of a unit of measurement. Mass, time, distance, heat, and 

angular separation are among the familiar examples of quantitative 

properties. For example, these data have meaning as a measurement, such as 

a person's height, weight, IQ, or blood pressure.  

 

In statistics, quantities can further broken into two types: Discrete Variable 

and Continuous Variable. 

 

Discrete Variable Data can only take certain values. For example: the 

number of students in a class (you can't have half a student). 

 

Continuous Variable Data can take any value (within a range). Example: 

People's heights could be any value (within the range of human heights), not 

just certain fixed heights. Continuous Variables would (literally) take 

forever to count. In fact, you would get to “forever” and never finish 

counting them. For example, take age. You can’t count “age”. Why not? 

Because it would literally take forever. For example, you could be: 25 years, 

10 months, 2 days, 5 hours, 4 seconds, 4 milliseconds, 8 nanoseconds, 99 

picosends and so on. 
 
 

Ranked Data 
 

Ranked data, or ordinal data, mixes numerical and categorical data. For 

example, rating a product on a scale from 0 (lowest) to 5 (highest) stars 

gives rank data. Rank data are often treated as categorical, where the groups 
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are ordered when graphs and charts are made. However, unlike categorical 

data, the numbers do have mathematical meaning. For example, if you 

survey 100 people and ask them to rate a product on a scale from 0 to 5, 

taking the average of the 100 responses will have meaning and same rank 

could be added up. This would not be the case with categorical data. 

 

In statistics, “ranking” refers to the data transformation in which numerical 

or ordinal values are replaced by their rank when the data are sorted. If, for 

example, the numerical data 3.4, 5.1, 2.6, 7.3 are observed, the ranks of 

these data items would be 2, 3, 1 and 4 respectively. 
 

Ranking the data involves putting the values in numerical order and then 

assigning new values to denote where in the ordered set they fall. We give 

the smallest value the number 1, the next largest value the number 2, the 

next largest number 3 etc. 

 

The numbers 1, 2, 3... 14 that are assigned to the various values are called 

the ranks. If there are n values in the sample, the largest value will have rank 

'n'. 

 

Sometimes there are ties in the data. This means that two or more values are 

the same, so that there is no strictly increasing order. When this happens, we 

average the ranks for the tied values. 

 
 

For example: 

To rank the following sample of 14 values: 

 

2, 34, -4, -6, 25, 2, 34, 34, 67, 28, -2, 0, 7, 23 

 

1st Sorting the values into the order of magnitude gives: 

 

-6, -4, –2, 0, 2, 2, 7, 23, 25, 28, 34, 34, 34, 67 

 

2nd assigning the rank numbers: 

 

There are 14 numbers, so the largest number has rank 14. 

 

3rd sorting the same value numbers. The ranks 5 and 6 need to be assigned to 

the two '2's; hence assign rank (5+6)/2 = 5.5 to each value 2. The ranks 11, 
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12, and 13, need to be assigned to the three '34's, hence assign rank 

(11+12+13)/3 = 12 to each value 34. 

 

Finally getting the ranks. The ranks for the sample are: 

 
Values -6 -4 -2 0 2 2 7 23 25 28 34 34 34 67 

Ranks 1 2 3 4 5.5 5.5 7 8 9 10 12 12 12 14 

 
 
 

Content or Values of Variables in Data 
 

In statistics, groups of individual data points may be classified as belonging 

to any of various statistical data types, e.g. categorical ("red", "blue", 

"green"), real number (1.68, -5, 1.7e+6), odd number(1,3,5) etc. The data 

type is a fundamental component of the semantic content of the variable, and 

controls which sorts of probability distributions can logically be used to 

describe the variable, the permissible operations on the variable, the type of 

regression analysis used to predict the variable, etc. The concept of data type 

is similar to the concept of level of measurement, but more specific: For 

example, count data require a different distribution (e.g. a Poisson 

distribution or binomial distribution) than non-negative real-valued data 

require, but both fall under the same level of measurement (a ratio scale). 

 

A categorical variable that can take on exactly two values is termed a binary 

variable or a dichotomous variable; an important special case is the 

Bernoulli variable, named after Swiss mathematician Jacob Bernoulli, the 

discrete probability distribution of a random variable which takes the value 1 

with probability and the value 0 with probability.  

 

Categorical variables with more than two possible values are called 

polytomous variables; categorical variables are often assumed to be 

polytomous unless otherwise specified. Discretization is treating continuous 

data as if it were categorical. Dichotomization is treating continuous data or 

polytomous variables as if they were binary variables. Regression analysis 

often treats category membership with one or more quantitative dummy 

variables. 
 

A polychotomous variable is a variable that can have more than two values 

(a variable with exactly two values is called a binary variable). 

Polychotomous variables can be ordered, unordered, or sequential: 
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- Ordered polychotomous variables: variables that have some kind of 

order, like: "1" if you earn up to $25,000, ǒ2ō if you earn $25,001-$50,000 

and ǒ3ō if you earn over $50,000. 

- Unordered polychotomous variables: variables that don’t have an 

implied order, like: "1" for male, "2" for female "3" for trans gendered male 

and "4" for trans gendered female. 

- Sequential polychotomous variables: variables with a sequence. For 

example: "1" for freshmen, "2" for sophomore, "3" for junior and "4" for 

senior. 
 

 

Polychotomous variables are usually qualitative variables, but they can be 

quantitative variables as well. For example, if studying birth weight of 

children, you could have the categories of heavy smoker/smoker/light 

smoker or non-smoker. But it may be more useful to code the “number of 

cigarettes smoked per day during pregnancy” into categories: 

1 - 0 cigarettes per day. 

2 - up to 5 cigarettes per day. 

3 - Between 6 and 20 cigarettes per day. 

4 - Over 20 cigarettes per day. 
 
 

In mathematics 
 

Magnitude (how much) and multitude (how many), the two principal types 

of quantities, are further divided as mathematical and physical. In formal 

terms, quantities their ratios, proportions, order and formal relationships of 

equality and inequality are studied by mathematics. The essential part of 

mathematical quantities consists of having a collection of variables, each 

assuming a set of values. These can be a set of a single quantity, referred to 

as a scalar when represented by real numbers, or have multiple quantities as 

do vectors and tensors, two kinds of geometric objects. 

 

The mathematical usage of a quantity can then be varied and so is 

situationally dependent. Quantities can be used as being infinitesimal, 

arguments of a function, variables in an expression (independent or 

dependent), or probabilistic as in random and stochastic quantities. In 

mathematics, magnitudes and multitudes are also not only two distinct kinds 

of quantity but furthermore relatable to each other. 
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Number theory covers the topics of the discrete quantities as numbers: 

number systems with their kinds and relations. Geometry studies the issues 

of spatial magnitudes: straight lines, curved lines, surfaces and solids, all 

with their respective measurements and relationships. 

 
 

In physical science 
 

Establishing quantitative structure and relationships between different 

quantities is the cornerstone of modern physical sciences. Physics is 

fundamentally a quantitative science. Its progress is chiefly achieved due to 

rendering the abstract qualities of material entities into physical quantities, 

by postulating that all material bodies marked by quantitative properties or 

physical dimensions are subject to some measurements and observations. 

Setting the units of measurement, physics covers such fundamental 

quantities as space (length, breadth, and depth) and time, mass and force, 

temperature, energy, and quanta. 

 

A distinction has also been made between intensive quantity and extensive 

quantity as two types of quantitative property, state or relation. The 

magnitude of an intensive quantity does not depend on the size, or extent, of 

the object or system of which the quantity is a property, whereas magnitudes 

of an extensive quantity are additive for parts of an entity or subsystems. 

Thus, magnitude does depend on the extent of the entity or system in the 

case of extensive quantity. Examples of intensive quantities are density and 

pressure, while examples of extensive quantities are energy, volume, and 

mass. 
 
 

Processing Data 
 

An introduction to the different types of data is the first step; it is important 

to establish the type of data collected in order to identify the correct means 

of summarizing, displaying, and analyzing that data. 

 

Summarizing the data as frequency distributions, tables and graphs will help 

to identify trends (which may or may not have been expected) that may 

inform the subsequent analyses. Outliers may be highlighted and/or 

distributional tendencies (e.g., skewness) which could invalidate or overly 

influence results may be identified at this stage.  
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Ways of describing or summarizing the data are called descriptive statistics. 

What these aim to do is to give the relevant and useful information without 

losing any features of importance. Perhaps in an ideal world, all potential 

users of the information would have time and be capable of taking the raw 

data and making their own independent conclusions, thereby avoiding being 

at the mercy of someone else's choice of analysis. In practice, there is 

usually only the time or space to give/consume limited information and 

hence it is important that the descriptions given are accurate and we fully 

understand what they are and their strengths and weaknesses. 

 

The appropriate summaries to use depend on whether the data is categorical 

or numeric. For numeric data there are several different potential summaries 

and the most appropriate depends on the distribution of the data. 
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Chapter 2 
 
 

Descriptive Statistics 
 
 

Summary of Descriptive Statistics 
 

Descriptive Statistics is based on the data that have initially been sorted or 

classified; therefore the data have been further divided as three groups, 

Qualitative data, Rank data and Numerical data. 

 

Classification of Descriptive Statistics: 
 
 
       Central Tendency: Mode 
    Qualitative 
       Data 
       Dispersion: Variation Ratio 
 
 
       Central Tendency:  Median; Percentile 

   Rank 
      Data 
       Dispersion: Quartile; Interquartile 
           
 Descriptive          Arithmetic 
  Statistics      Central Tendency: Mean  Geometric 
    Quantitative       Harmonic 
    (Numerical) 
       Data     Variance 
       Dispersion  Standard Deviation 
         Range 
 
       Coefficient of Variation:  CV value 
       (Coefficient of dispersion) 
 
      Central limit theorem 
    Distribution  Moments; L-moment 
      Shape  Skewness 
      Kurtosis 
 
 



 30 

 
 

Central Tendency and Statistical Dispersion 
 

In statistics, a central tendency (or measure of central tendency) is a central 

or typical value for a probability distribution. It may also be called a center 

or location of the distribution. Colloquially, measures of central tendency are 

often called averages.  

 

Dispersion (also called variability, scatter, or spread) is the extent to which a 

distribution is stretched or squeezed. Common examples of measures of 

statistical dispersion are the variance, standard deviation, and interquartile 

range. 

 

The central tendency of a distribution is typically contrasted with its 

dispersion or variability; dispersion and central tendency are the often 

characterized properties of distributions. Analysis may judge whether data 

has a strong or a weak central tendency based on its dispersion. 

 

Dispersion is contrasted with location or central tendency, and together they 

are the most used properties of distributions. 

 

The most common measures of central tendency are the arithmetic mean, the 

median, and the mode. A middle tendency can be calculated for either a 

finite set of values or for a theoretical distribution, such as the normal 

distribution.  

 
 

Measures of Central Tendency for Qualitative Data 
 

Mode: The mode of a set of data values is the value that appears most often. 

If X is a discrete random variable, the mode is the value x at which the 

probability mass function takes its maximum value. In other words, it is the 

value that is most likely to be sampled. 
 
 

Measures of Dispersion for Qualitative Data 
 

The variation ratio is a simple measure of statistical dispersion in nominal 

distributions; it is the simplest measure of qualitative variation. It is defined 
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as the proportion of cases which are not in the mode category: where f is the 

frequency of the mode, and N is the total number of cases. 
 
 

Measures of Central Tendency for Rank Data 
 

In statistics and probability theory, a median is a value separating the higher 

half from the lower half of a data sample, a population or a probability 

distribution. For a data set, it may be thought of as "the middle" value. 
 
 
 

Measures of Dispersion for Rank Data 
 

Percentile 
 

A percentile is a measure used in statistics indicating the value below which 

a given percentage of observations in a group of observations falls. For 

example, the 20th percentile is the value below which 20% of the 

observations may be found. Equivalently, 80% of the observations are found 

above the 20th percentile. 
 

 
 
 

Quartile  
 

A quartile is a type of quantile which divides the number of data points into 

four more or less equal parts, or quarters. The first quartile is defined as the 

middle number between the smallest number and the median of the data set. 

 

In descriptive statistics, the interquartile range (IQR), also called the 

midspread, middle 50%, or H-spread, is a measure of statistical dispersion, 

being equal to the difference between 75th and 25th percentiles, or between 
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upper and lower quartiles, IQR = Q3 -  Q1. In other words, the IQR is the 

first quartile subtracted from the third quartile; these quartiles can be clearly 

seen on a box plot on the data. It is a trimmed estimator, defined as the 25% 

trimmed range, and is a commonly used robust measure of scale. 

 

The IQR is a measure of variability, based on dividing a data set into 

quartiles. Quartiles divide a rank-ordered data set into four equal parts. The 

values that separate parts are called the first, second, and third quartiles; and 

they are denoted by Q1, Q2, and Q3, respectively. 
 
 

Measures of Central Tendency for Quantitative Data 
 
Mean 

 

There are several kinds of mean in mathematics, especially in statistics. In 

mathematics and statistics, the arithmetic mean, or simply the mean or the 

average (when the context is clear), is the sum of a collection of numbers 

divided by the count of numbers in the collection. 
 

Arithmetic mean 
 

In mathematics and statistics, the arithmetic mean, or simply the mean or the 

average, is the sum of a collection of numbers divided by the count of 

numbers in the collection. The collection is often a set of results of an 

experiment or an observational study, or frequently a set of results from a 

survey. The term "arithmetic mean" is preferred in some contexts in 

mathematics and statistics, because it helps distinguish it from other means, 

such as the geometric mean and the harmonic mean. 

 

The arithmetic mean may be contrasted with the median. The median is 

defined such that no more than half the values are larger than, and no more 

than half are smaller than, the median. If elements in the data increase 

arithmetically, when placed in some order, then the median and arithmetic 

average are equal. For example, consider the data sample 1,2,3,4. The 

average is 2.5, as is the median. However, when we consider a sample that 

cannot be arranged so as to increase arithmetically, such as 1,2,4,8,16, the 

median and arithmetic average can differ significantly. In this case, the 

arithmetic average is 6.2, while the median is 4. In general, the average 

value can vary significantly from most values in the sample, and can be 

larger or smaller than most of them. 
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For example, consider the monthly salary of 10 employees of a firm: 2500, 

2700, 2400, 2300, 2550, 2650, 2750, 2450, 2600, 2400. The arithmetic mean 

is 

 

(2500+2700+2400+2300+2550+2650+2750+2450+2600+2400) /10 = 2530 
              
 

Geometric mean 
 

The geometric mean is a mean or average, which indicates the central 

tendency or typical value of a set of numbers by using the product of their 

values (as opposed to the arithmetic mean which uses their sum). The 

geometric mean is defined as the n-th root of the product of n numbers. 

 

In mathematics, the geometric mean is a mean or average, which indicates 

the central tendency or typical value of a set of numbers by using the 

product of their values (as opposed to the arithmetic mean which uses their 

sum). The geometric mean is defined as the nth root of the product of n 

numbers, i.e., for a set of numbers x1, x2, ... xn, the geometric mean is 

defined as 
 

      n    x1 x2 ... xn 
       

 

For instance, the geometric mean of two numbers, say 4, 1 and 1/32, is just 

the cube root of their product, that is, 
 
 

      3    4 x 1 x 1/32   = 1/2 
        

 
 

Harmonic mean 
 

The harmonic mean (sometimes called the subcontrary mean) is one of 

several kinds of average, and in particular, one of the Pythagorean means. 

Typically, it is appropriate for situations when the average of rates is 

desired. 
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The harmonic mean can be expressed as the reciprocal of the arithmetic 

mean of the reciprocals of the given set of observations. As a simple 

example, the harmonic mean of 1, 4, and 4 is 
 

 
 
 
 

Difference of mode, median and mean 
 

The arithmetic mean may be contrasted with the median. The median is 

defined such that no more than half the values are larger than, and no more 

than half are smaller than, the median. If elements in the data increase 

arithmetically, when placed in some order, then the median and arithmetic 

average are equal. For example, consider the data sample 1,2,3,4. The 

average is 2.5, as is the median. However, when we consider a sample that 

cannot be arranged so as to increase arithmetically, such as 1,2,4,8,16, the 

median and arithmetic average can differ significantly. In this case, the 

arithmetic average is 6.2, while the median is 4. In general, the average 

value can vary significantly from most values in the sample, and can be 

larger or smaller than most of them. 

 

For instance, comparison of two log-normal distributions with equal median, 

but different skewness, resulting in different means and modes illustrated as 

follows: 
 

 
 



 35 

 
 

Measures of Dispersion for Quantitative Data 
 

Common examples of measures of statistical dispersion are the variance, 

standard deviation, and interquartile range. 
 
 

Variance 
 

In probability theory and statistics, variance is the expectation of the squared 

deviation of a random variable from its mean. Informally, it measures how 

far a set of numbers is spread out from their average value.  
 
 

Standard Deviation 
 

In statistics, the standard deviation is a measure of the amount of variation or 

dispersion of a set of values. A low standard deviation indicates that the 

values tend to be close to the mean (also called the expected value) of the 

set, while a high standard deviation indicates that the values are spread out 

over a wider range. 
 
 

Coefficient of Variation (CV) 
 

In probability theory and statistics, the coefficient of variation (CV), also 

known as relative standard deviation (RSD), is a standardized measure of 

dispersion of a probability distribution or frequency distribution.  

 

The coefficient of variation (CV) is defined as the ratio of the standard 

deviation  to the mean .  
 

CV  =  / 

 

It shows the extent of variability in relation to the mean of the population. 

The coefficient of variation should be computed only for data measured on a 

ratio scale, that is, scales that have a meaningful zero and hence allow 

relative comparison of two measurements (i.e., division of one measurement 

by the other). 
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Shape of a Probability Distribution 
 

In statistics, the concept of the shape of a probability distribution arises in 

questions of finding an appropriate distribution to use to model the statistical 

properties of a population, given a sample from that population. The shape 

of a distribution may be considered either descriptively, using terms such as 

"J-shaped", or numerically, using quantitative measures such as skewness 

and kurtosis. 
 

 

 

Central Limit Theorem 
 

In probability theory, the central limit theorem (CLT) establishes that, in 

some situations, when independent random variables are added, their 

properly normalized sum tends toward a normal distribution (informally a 

bell curve) even if the original variables themselves are not normally 

distributed. The theorem is a key concept in probability theory because it 

implies that probabilistic and statistical methods that work for normal 

distributions can be applicable to many problems involving other types of 

distributions. 
 
 
 

Skewness 
 

In probability theory and statistics, skewness is a measure of the asymmetry 

of the probability distribution of a real-valued random variable about its 

mean. The skewness value can be positive, zero, negative, or undefined. 
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Kurtosis 
 

In probability theory and statistics, kurtosis (from Greek, kyrtos or kurtos, 

meaning "curved, arching") is a measure of the "tailedness" of the 

probability distribution of a real-valued random variable. Like skewness, 

kurtosis describes the shape of a probability distribution and there are 

different ways of quantifying it for a theoretical distribution and 

corresponding ways of estimating it from a sample from a population. 

Different measures of kurtosis may have different interpretations. 
 
 

Moment 
 

The moments of a function are quantitative measures related to the shape of 

the function's graph. The concept is used in both mechanics and statistics. 
 

L-moment 

 

In statistics, L-moments are a sequence of statistics used to summarize the 

shape of a probability distribution. They are linear combinations of order 

statistics (L-statistics) analogous to conventional moments, and can be used 

to calculate quantities analogous to standard deviation, skewness and 

kurtosis, termed the L-scale, L-skewness and L-kurtosis respectively (the L-

mean is identical to the conventional mean). Standardised L-moments are 

called L-moment ratios and are analogous to standardized moments. Just as 

for conventional moments, a theoretical distribution has a set of population 

L-moments. Sample L-moments can be defined for a sample from the 

population, and can be used as estimators of the population L-moments. 

 

The main benefits of L-estimators are that they are often extremely simple, 

and often robust statistics: assuming sorted data, they are very easy to 

calculate and interpret, and are often resistant to outliers. They thus are 

useful in robust statistics, as descriptive statistics, in statistics education, and 

when computation is difficult. However, they are inefficient, and in modern 

times robust statistics M-estimators are preferred, though these are much 

more difficult computationally. In many circumstances L-estimators are 

reasonably efficient, and thus adequate for initial estimation. 
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Simple L-estimators can be visually estimated from a box plot, and include 

interquartile range, midhinge, range, mid-range, and trimean. 
 

 

Count Variables 
 

An individual piece of count data is often termed a count variable. When 

such a variable is treated as a random variable, the Poisson, binomial and 

negative binomial distributions are commonly used to represent its 

distribution. 
 
 
 

Graphical Examination 
 

Graphical examination of count data may be aided by the use of data 

transformations chosen to have the property of stabilising the sample 

variance. In particular, the square root transformation might be used when 

data can be approximated by a Poisson distribution (although other 

transformation have modestly improved properties), while an inverse sine 

transformation is available when a binomial distribution is preferred. 

 

In probability theory and statistics, the index of dispersion, dispersion index, 

coefficient of dispersion, relative variance, or variance-to-mean ratio 

(VMR), like the coefficient of variation, is a normalized measure of the 

dispersion of a probability distribution: it is a measure used to quantify 

whether a set of observed occurrences are clustered or dispersed compared 

to a standard statistical model. 
 
 
 

Summary of Data 
 

Grouped data are data formed by aggregating individual observations of a 

variable into groups, so that a frequency distribution of these groups serves 

as a convenient means of summarizing or analyzing the data. There are two 

major types of grouping: data binning of a single-dimensional variable, 

replacing individual numbers by counts in bins; and grouping multi-

dimensional variables by some of the dimensions (especially by independent 

variables), obtaining the distribution of ungrouped dimensions (especially 

the dependent variables). 
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Data Binning 
 

Data binning (also called Discrete binning or bucketing) is a data pre-

processing technique used to reduce the effects of minor observation errors. 

The original data values which fall into a given small interval, a bin, are 

replaced by a value representative of that interval, often the central value. It 

is a form of quantization. 

 

Statistical data binning is a way to group numbers of more or less continuous 

values into a smaller number of "bins". For example, if you have data about 

a group of people, you might want to arrange their ages into a smaller 

number of age intervals (for example, grouping every five years together). It 

can also be used in multivariate statistics, binning in several dimensions at 

once. 

 

Histograms are an example of data binning used in order to observe 

underlying distributions. They typically occur in one-dimensional space and 

in equal intervals for ease of visualization. 

 
 

Dependent and independent variables are variables in mathematical 

modeling, statistical modeling and experimental sciences. Dependent 

variables receive this name because, in an experiment, their values are 

studied under the supposition or hypothesis that they depend, by some law or 

rule (e.g., by a mathematical function), on the values of other variables. 

Independent variables, in turn, are not seen as depending on any other 

variable in the scope of the experiment in question; thus, even if the existing 

dependency is invertible (e.g., by finding the inverse function when it 

exists), the nomenclature is kept if the inverse dependency is not the object 

of study in the experiment. 
 
 
 

Frequency Distribution 
 

In statistics, a frequency distribution is a list, table or graph that displays the 

frequency of various outcomes in a sample. Each entry in the table contains 
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the frequency or count of the occurrences of values within a particular group 

or interval. 
 
 

Contingency Table 
 

In statistics, a contingency table (also known as a cross tabulation or 

crosstab) is a type of table in a matrix format that displays the (multivariate) 

frequency distribution of the variables. They are heavily used in survey 

research, business intelligence, engineering and scientific research. They 

provide a basic picture of the interrelation between two variables and can 

help find interactions between them. 
 

 

Correlation and Dependence 
 

In statistics, correlation or dependence is any statistical relationship, whether 

causal or not, between two random variables or bivariate data. In the 

broadest sense correlation is any statistical association, though it commonly 

refers to the degree to which a pair of variables are linearly related. Familiar 

examples of dependent phenomena include the correlation between the 

physical statures of parents and their offspring, and the correlation between 

the price of a good and the quantity the consumers are willing to purchase, 

as it is depicted in the so-called demand curve. 
 
 

Pearson Correlation Coefficient 
 

In statistics, the Pearson correlation coefficient (PCC), also referred to as 

Pearson's r, the Pearson product-moment correlation coefficient (PPMCC), 

or the bivariate correlation, is a statistic that measures linear correlation 

between two variables X and Y. It has a value between +1 and -1. A value of 

+1 is total positive linear correlation, 0 is no linear correlation, and -1 is total 

negative linear correlation 
 
 

Rank Correlation 
 

In statistics, a rank correlation is any of several statistics that measure an 

ordinal association - the relationship between rankings of different ordinal 

variables or different rankings of the same variable, where a "ranking" is the 
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assignment of the ordering labels "first", "second", "third", etc. to different 

observations of a particular variable. A rank correlation coefficient measures 

the degree of similarity between two rankings, and can be used to assess the 

significance of the relation between them. For example, two common 

nonparametric methods of significance that use rank correlation are the 

Mann-Whitney U test and the Wilcoxon signed-rank test. 
 
 

Scatter Plot 
 

A scatter plot (also called a scatterplot, scatter graph, scatter chart, 

scattergram, or scatter diagram) is a type of plot or mathematical diagram 

using Cartesian coordinates to display values for typically two variables for 

a set of data. If the points are coded (color/shape/size), one additional 

variable can be displayed. The data are displayed as a collection of points, 

each having the value of one variable determining the position on the 

horizontal axis and the value of the other variable determining the position 

on the vertical axis. 
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Chapter 3 
 
 

Probability Theory 
 

 

Gaussian Distribution 
 

In probability theory, a normal (or Gaussian or Gauss or Laplace-Gauss) 

distribution is a type of continuous probability distribution for a real-valued 

random variable. The general form of its probability density function is 
 

 
 

The parameter  is the mean or expectation of the distribution (and also its 

median and mode), while the parameter  is its standard deviation. A 

random variable with a Gaussian distribution is said to be normally 

distributed, and is called a normal deviate. 
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In probability theory, a normal distribution is a type of continuous 

probability distribution for a real-valued random variable. The general form 

of its probability density function is the parameter is the mean or expectation 

of the distribution, while the parameter is its standard deviation. 
 

 

Standard Normal Distribution 
 

The simplest case of a normal distribution is known as the standard normal 

distribution. This is a special case when mean μ=0 and standard deviation 

=1. The normal distribution is symmetric about its mean, and is non-zero 

over the entire real line. It is described by following characters: 

 

1. The normal distribution is the only distribution whose cumulants 

beyond the first two (i.e., other than the mean and variance) are zero. 

It is also the continuous distribution with the maximum entropy for a 

specified mean and variance. 

2. A normal distribution is a type of continuous probability distribution 

for a real-valued random variable. The general form of its probability 

density function is the mean or expectation of the distribution, while 

the parameter is its standard deviation. 

3. Assuming that the mean and variance are finite, the normal 

distribution is the only distribution where the mean and variance 

calculated from a set of independent draws are independent of each 

other. 

4. The normal distribution is a continuous probability distribution and a 

fundamental for statistics. 
 

 
The graph of No Skewness green with green color showed a Normal Distribution. 
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The normal distribution has several implications for probability: 

1. The total area under the normal curve is equal to 1. 

2. The probability that a normal random variable X equals any particular 

value is 0. 

3. The probability that X is greater than an equals the area under the 

normal curve bounded by a and plus infinity (as indicated by the non-

shaded area in the figure below). 

4. The probability that X is less than a equals the area under the normal 

curve bounded by a and minus infinity (as indicated by the shaded 

area in the figure below). 

 

Additionally, every normal curve (regardless of its mean or standard 

deviation) conforms to the following "rule". 

1. About 68% of the area under the curve falls within 1 standard 

deviation of the mean. 

2. About 95% of the area under the curve falls within 2 standard 

deviations of the mean. 

3. About 99.7% of the area under the curve falls within 3 standard 

deviations of the mean. 

 

To find the probability () associated with a normal random variable, use a 

graphing calculator, an online normal distribution calculator, or a normal 

distribution table. In the examples below, we illustrate the use of normal 

distribution tables. (or the probability with the z-value respectively) 

 

 Z    Z 

0.8 1.28155 0.999 3.29053 

0.9 1.64485 0.9999 3.89059 

0.95 1.95996 0.99999 4.41717 

0.98 2.32635 0.999999 4.89164 

0.99 2.57583 0.9999999 5.32672 

0.995 2.80703 0.99999999 5.73073 

0.998 3.09023 0.999999999 6.10941 

 

 

Calculate a range of distribution: 

For example, a sample with normal distribution, and mean: =537.8, 

standard deviation: S =43.9, what is its 95% distribution? 

Lowest point:  -1.96s =537.8 -1.96 x 43.9 = 451.8 
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Highest point:  +1.96s=537.8 +1.96 x 43.9 = 623.8 

 

Therefore, the 95% distribution is located between 451.8 and 623.8. 
 
 
 

The normal distribution may not be a suitable model for variables that are 

inherently positive or strongly skewed, such as the weight of a person or the 

price of a share. Such variables may be better described by other 

distributions, such as the log-normal distribution or the Pareto distribution. 
 

 

Log-normal Distribution 
 

In probability theory, a log-normal distribution is a continuous probability 

distribution of a random variable whose logarithm is normally distributed. 

Thus, if the random variable X is log-normally distributed, then Y = ln(X) 

has a normal distribution.  

 

Equivalently, if Y has a normal distribution, then the exponential function of 

Y, X = exp(Y), has a log-normal distribution. A random variable which is 

log-normally distributed takes only positive real values. It is a convenient 

and useful model for measurements in exact and engineering sciences as 

well as medicine, economics and other fields, e.g. for energies, 

concentrations, lengths, financial returns and other amounts. 
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While most people are familiar with a normal distribution, they may not be 

as familiar with log-normal distribution. A normal distribution can be 

converted to a log-normal distribution using logarithmic mathematics. That 

is primarily the basis as log-normal distributions can only come from a 

normally distributed set of random variables. 

 

With transformation of variance, the lognormal distribution could be in 

scope of application of the normal distribution. There can be a few reasons 

for using log-normal distributions in conjunction with normal distributions. 

In general most log-normal distributions are the result of taking the natural 

log where the base is equal to e=2.718. However, the log-normal distribution 

can be scaled using a different base which affects the shape of the lognormal 

distribution. 

 

Overall the log-normal distribution plots the log of random variables from a 

normal distribution curve. In general, the log is known as the exponent to 

which a base number must be raised in order to produce the random variable 

(x) that is found along a normally distributed curve. 
 
 

Pareto Distribution 
 

The Pareto distribution, named after the Italian civil engineer, economist, 

and sociologist Vilfredo Pareto, is a power-law probability distribution that 

is used in description of social, scientific, geophysical, actuarial, and many 

other types of observable phenomena. Originally applied to describing the 

distribution of wealth in a society, fitting the trend that a large portion of 

wealth is held by a small fraction of the population, the Pareto distribution 

has colloquially become known and referred to as the Pareto principle, or 

"80-20 rule", and is sometimes called the "Matthew principle". This rule 

states that, for example, 80% of the wealth of a society is held by 20% of its 

population. 
 
 

Quantile Function 
 

The quantile function of a distribution is the inverse of the cumulative 

distribution function. The quantile function of the standard normal 

distribution is called the probit function, and can be expressed in terms of 

the inverse error function. 
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Sampling Error 
 

In statistics, sampling errors are incurred when the statistical characteristics 

of a population are estimated from a subset, or sample, of that population. 

Since the sample does not include all members of the population, statistics 

on the sample, such as means and quartiles, generally differ from the 

characteristics of the entire population, which are known as parameters.  

 

For example, if one measures the height of a thousand individuals from a 

country of one million, the average height of the thousand is typically not 

the same as the average height of all one million people in the country.  

 

Since sampling is typically done to determine the characteristics of a whole 

population, the difference between the sample and population values is 

considered an error. Exact measurement of sampling error is generally not 

feasible since the true population values are unknown.  
 
 

Theoretical Standard Error (SE) 

 

The standard error (SE) of a statistic (usually an estimate of a parameter) is 

the standard deviation of its sampling distribution or an estimate of that 

standard deviation. If the parameter or the statistic is the mean, it is called 

the standard error of the mean (SEM). 
 

The sampling distribution of a population mean is generated by repeated 

sampling and recording of the means obtained. This forms a distribution of 

different means, and this distribution has its own mean and variance. 

Mathematically, the variance of the sampling distribution obtained is equal 

to the variance of the population divided by the sample size. This is because 

as the sample size increases, sample means cluster more closely around the 

population mean. 

 

Therefore, the relationship between the standard error of the mean and the 

standard deviation is such that, for a given sample size, the standard error of 

the mean equals the standard deviation divided by the square root of the 

sample size. In other words, the standard error of the mean is a measure of 

the dispersion of sample means around the population mean. 
 

The standard error of the mean (SEM) can be expressed as: 
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              Standard Deviation 

  x =     or Standard Error  =  

  n        Square Root of Sample Size 

 

where  is the standard deviation of the population; n is the size (number of 

observations) of the sample. 
 
 
 

Estimation of Standard Error of a Sample Mean 
 

Since the population standard deviation is seldom known, the standard error 

of the mean is usually estimated as the sample standard deviation divided by 

the square root of the sample size (assuming statistical independence of the 

values in the sample). 
 

 
where s is the sample standard deviation (i.e., the sample-based estimate of 

the standard deviation of the population), and n is the size (number of 

observations) of the sample. 
 

 

In those contexts where standard error of the mean is defined not as the 

standard deviation of the samples, but as its estimate, this is the estimate 

typically given as its value. Thus, it is common to see standard deviation of 

the mean alternatively defined as: 

 
The standard deviation of the sample mean is equivalent to the standard 

deviation of the error in the sample mean with respect to the true mean, since 

the sample mean is an unbiased estimator. Therefore, the standard error of 

the mean can also be understood as the standard deviation of the error in the 

sample mean with respect to the true mean (or an estimate of that statistic). 

 

Note:  

1. The standard error and the standard deviation of small samples tend to 

systematically underestimate the population standard error and standard 
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deviation: the standard error of the mean is a biased estimator of the 

population standard error. 

 

2. In regression analysis, the term "standard error" refers either to the square 

root of the reduced chi-squared statistic or the standard error for a particular 

regression coefficient (as used in, e.g., confidence intervals). 
 
 

Significance Testing 
 

There are many different statistical significance, or hypothesis, tests. They 

all follow the same basic principle. The appropriate test for a given situation 

depends on the nature of the data being analyzed. 

 

A typical solution:  

Standardize the difference of variable and compare the standardized 

difference. 
 
 

Null Hypothesis 
 

All statistical significance tests start with a null hypothesis. A statistical 

significance test measures the strength of evidence that the data sample 

supplies for or against some proposition of interest. 

 

This proposition is known as a 'null hypothesis', since it usually relates to 

there being 'no difference' between groups' or 'no effect' of a treatment. 

 

The methods of null hypothesis: 
 

For Null hypothesis H0: H0: μ≥μ0 vs. alternative hypothesis H1: H1: μ<μ0  , 

it is upper/right-tailed (one tailed). 

 

For Null hypothesis H0: μ≤μ0 vs. alternative hypothesis H1: μ>μ0 , it is 

lower/left-tailed (one tailed). 

 

For Null hypothesis H0: μ=μ0 vs. alternative hypothesis H1: μ≠μ0 , it is two-

tailed. 

 

 

For example:  
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CMV infected babies have the same average birthweight as non-infected 

babies:  

It is a typical null hypothesis H0: μ=μ0 vs. alternative hypothesis H1: μ≠μ0 , 

it is two-tailed. 

 

Thalassaemia does not have any effect on ferritin level: 

It is a typical null hypothesis H0: μ=μ0 vs. alternative hypothesis H1: μ≠μ0 , 

it is two-tailed. 

 

 

Even if our hypothesis is not to do with 'no difference' it is still convention 

that the hypothesis being tested is known as the null hypothesis. 
 
 

The p-values, gives a detailed description of significance testing, and 

discusses the relationship between confidence intervals and significance 

tests. 
 
 
 

Type I Error and Type II Error 
 

In statistical hypothesis testing, a type I error is the rejection of a true null 

hypothesis (also known as a "false positive" finding or conclusion; example: 

"an innocent person is convicted"), while a type II error is the non-rejection 

of a false null hypothesis (also known as a "false negative" finding or 

conclusion; example: "a guilty person is not convicted"). Much of statistical 

theory revolves around the minimization of one or both of these errors, 

though the complete elimination of either is a statistical impossibility for 

non-deterministic algorithms. By selecting a low threshold (cut-off) value 

and modifying the alpha (p) level, the quality of the hypothesis test can be 

increased. The knowledge of Type I errors and Type II errors is widely used 

in medical science, biometrics and computer science. 
 

Intuitively, type I errors can be thought of as errors of commission, and type 

II errors as errors of omission. For example, in the context of binary 

classification, when trying to decide whether an input image X is an image 

of a dog: an error of commission (type I) is classifying X as a dog when it 

isn't, whereas an error of omission (type II) is classifying X as not a dog 

when it is. 
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Statistical Background 
 

In statistical test theory, the notion of a statistical error is an integral part of 

hypothesis testing. The test goes about choosing about two competing 

propositions called null hypothesis, denoted by H0 and alternative 

hypothesis, denoted by H1. This is conceptually similar to the judgement in a 

court trial. The null hypothesis corresponds to the position of defendant: just 

as he is presumed to be innocent until proven guilty, so is the null hypothesis 

presumed to be true until the data provide convincing evidence against it. 

The alternative hypothesis corresponds to the position against the defendant. 

 

If the result of the test corresponds with reality, then a correct decision has 

been made. However, if the result of the test does not correspond with 

reality, then an error has occurred. There are two situations in which the 

decision is wrong. The null hypothesis may be true, whereas we reject H0. 

On the other hand, the alternative hypothesis H1 may be true, whereas we do 

not reject H0. Two types of error are distinguished: Type I error and Type II 

error. 
 
 

Type I Error 
 

The first kind of error is the rejection of a true null hypothesis as the result 

of a test procedure. This kind of error is called a type I error and is 

sometimes called an error of the first kind. 
 

In terms of the courtroom example, a type I error corresponds to convicting 

an innocent defendant. 
 
 

Type II Error 
 

The second kind of error is the failure to reject a false null hypothesis as the 

result of a test procedure. This sort of error is called a type II error and is 

also referred to as an error of the second kind. 

 

In terms of the courtroom example, a type II error corresponds to acquitting 

a criminal. 
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In terms of false positives and false negatives, a positive result corresponds 

to rejecting the null hypothesis, while a negative result corresponds to failing 

to reject the null hypothesis; "false" means the conclusion drawn is 

incorrect. Thus, a type I error is equivalent to a false positive, and a type II 

error is equivalent to a false negative. 
 
 

Statistical Significance 
 

If the probability of obtaining a result as extreme as the one obtained, 

supposing that the null hypothesis were true, is lower than a pre-specified 

cut-off probability (for example, 5%), then the result is said to be 

statistically significant and the null hypothesis is rejected. 
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Chapter 4 
 
 

Statistical inference 
 
 

Statistical inference is the process of using data analysis to deduce properties 

of an underlying distribution of probability. Inferential statistical analysis 

infers properties of a population, for example by testing hypotheses and 

deriving estimates. It is assumed that the observed data set is sampled from a 

larger population. 

 

Statistical inference makes propositions about a population, using data 

drawn from the population with some form of sampling. Given a hypothesis 

about a population, for which we wish to draw inferences, statistical 

inference consists of (first) selecting a statistical model of the process that 

generates the data and (second) deducing propositions from the model. 
 
 

Common Type of Statistical Inference 
 
 
    Z-test (u-test)  

  t-test 
    Analysis of variance (ANOVA): F-test; Bartlett's test. 
    Binominal distribution 
Inferential Statistics   Poisson distribution 
    Chi-square test (χ²-test) 
    Nonparametric Statistic Analysis (Rank sum test) 
    Linear regression 

Multiple linear regression 
 
 

Z-test 
 

A Z-test (or u-test) is any statistical test for which the distribution of the test 

statistic under the null hypothesis can be approximated by a normal 

distribution. Z-test tests the mean of a distribution. For each significance 



 54 

level in the confidence interval, the Z-test has a single critical value (for 

example, 1.96 for 5% two tailed) which makes it more convenient than the 

Student's t-test whose critical values are defined by the sample size (through 

the corresponding degrees of freedom). 
 

Because of the central limit theorem, many test statistics are approximately 

normally distributed for large samples. Therefore, many statistical tests can 

be conveniently performed as approximate Z-tests if the sample size is large 

or the population variance is known. If the population variance is unknown 

(and therefore has to be estimated from the sample itself) and the sample 

size is not large (n < 30), the Student's t-test (t-test) may be more 

appropriate. 

 

How to perform a Z test when T is a statistic that is approximately normally 

distributed under the null hypothesis is as follows: 

 

First, estimate the expected value μ of T under the null hypothesis, and 

obtain an estimate s of the standard deviation of T. 

 

Second, determine the properties of T: one tailed or two tailed. 
 

For Null hypothesis H0: H0: μ≥μ0 vs. alternative hypothesis H1: H1: μ<μ0  , 

it is upper/right-tailed (one tailed). 

 

For Null hypothesis H0: μ≤μ0 vs. alternative hypothesis H1: μ>μ0 , it is 

lower/left-tailed (one tailed). 

 

For Null hypothesis H0: μ=μ0 vs. alternative hypothesis H1: μ≠μ0 , it is two-

tailed. 

 

Third, calculate the standard score: 
 

 
which one-tailed and two-tailed p-values can be calculated as Φ(Z)  (for 

upper/right-tailed tests),  Φ (-Z)(for lower/left-tailed tests) and 2Φ (-|Z|) (for 

two-tailed tests) where Φ is the standard normal cumulative distribution 

function. 
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Z-test example 
 

Suppose that in a particular geographic region, the mean and standard 

deviation of scores on a reading test are 100 points, and 12 points, 

respectively. Our interest is in the scores of 55 students in a particular school 

who received a mean score of 96. We can ask whether this mean score is 

significantly lower than the regional mean-that is, are the students in this 

school comparable to a simple random sample of 55 students from the 

region as a whole, or are their scores surprisingly low? 
 

For example, the null hypothesis:  

H0: μ≥μ0 (the mean score is not lower than the regional mean) 

H1: μ<μ0  (the mean score is lower than the regional mean) 

 

First calculate the standard error of the mean: 

 
 

Where  is the population standard deviation. 

 

Next calculate the z-score, which is the distance from the sample mean to 

the population mean in units of the standard error: 
 

 
 

In this example, we treat the population mean and variance as known, which 

would be appropriate if all students in the region were tested. When 

population parameters are unknown, a t test should be conducted instead. 

 

The classroom mean score is 96, which is -2.47 standard error units from the 

population mean of 100. Looking up the z-score in a table of the standard 

normal distribution cumulative probability, we find that the probability of 

observing a standard normal value below -2.47 is approximately 0.5 - 0.4932 

= 0.0068. This is the one-sided p-value for the null hypothesis that the 55 

students are comparable to a simple random sample from the population of 

all test-takers. The two-sided p-value is approximately 0.014 (twice the one-

sided p-value). 
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Another way of stating things is that with probability 1 - 0.014 = 0.986, a 

simple random sample of 55 students would have a mean test score within 4 

units of the population mean. We could also say that with 98.6% confidence 

we reject the null hypothesis that the 55 test takers are comparable to a 

simple random sample from the population of test-takers. 

 

The Z-test tells us that the 55 students of interest have an unusually low 

mean test score compared to most simple random samples of similar size 

from the population of test-takers.  

 

A deficiency of this analysis is that it does not consider whether the effect 

size of 4 points is meaningful. If instead of a classroom, we considered a 

subregion containing 900 students whose mean score was 99, nearly the 

same z-score and p-value would be observed. This shows that if the sample 

size is large enough, very small differences from the null value can be highly 

statistically significant. See statistical hypothesis testing for further 

discussion of this issue. 

 
 

Z-test conditions 

 

For the Z-test to be applicable, certain conditions must be met. 

 

Nuisance parameters should be known, or estimated with high accuracy (an 

example of a nuisance parameter would be the standard deviation in a one-

sample location test). Z-tests focus on a single parameter, and treat all other 

unknown parameters as being fixed at their true values. In practice, due to 

Slutsky's theorem, "plugging in" consistent estimates of nuisance parameters 

can be justified. However if the sample size is not large enough for these 

estimates to be reasonably accurate, the Z-test may not perform well. 

 

The test statistic should follow a normal distribution. Generally, one appeals 

to the central limit theorem to justify assuming that a test statistic varies 

normally. There is a great deal of statistical research on the question of when 

a test statistic varies approximately normally. If the variation of the test 

statistic is strongly non-normal, a Z-test should not be used. 

 

If estimates of nuisance parameters are plugged in as discussed above, it is 

important to use estimates appropriate for the way the data were sampled. In 

the special case of Z-tests for the one or two sample location problem, the 
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usual sample standard deviation is only appropriate if the data were collected 

as an independent sample. 
 

In some situations, it is possible to devise a test that properly accounts for 

the variation in plug-in estimates of nuisance parameters. In the case of one 

and two sample location problems, a t-test does this. 

 

The z-score is often used in the z-test in standardized testing - the analog of 

the Student's t-test for a population whose parameters are known, rather than 

estimated. As it is very unusual to know the entire population, the t-test is 

much more widely used. 
 

 

 

T-Test 
 

The t-test is any statistical hypothesis test in which the test statistic follows a 

Student's t-distribution under the null hypothesis. A t-test looks at the t-

statistic, the t-distribution values, and the degrees of freedom to determine 

the statistical significance.  

 

A t-test is a type of inferential statistic used to determine if there is a 

significant difference between the means of two groups, which may be 

related in certain features. It is mostly used when the data sets, like the data 

set recorded as the outcome from flipping a coin 100 times, would follow a 

normal distribution and may have unknown variances. A t-test is used as a 

hypothesis testing tool, which allows testing of an assumption applicable to 

a population.  

 

A t-test is most commonly applied when the test statistic would follow a 

normal distribution if the value of a scaling term in the test statistic were 

known. When the scaling term is unknown and is replaced by an estimate 

based on the data, the test statistics (under certain conditions) follow a 

Student's t distribution. The t-test can be used, for example, to determine if 

the means of two sets of data are significantly different from each other. (To 

conduct a test with three or more means, one must use an analysis of 

variance) 
 
 

Assumptions 
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Most test statistics have the form t = Z/s, where Z and s are functions of the 

data. 

Z may be sensitive to the alternative hypothesis (i.e., its magnitude tends to 

be larger when the alternative hypothesis is true), whereas s is a scaling 

parameter that allows the distribution of t to be determined. 

 

As an example, in the one-sample t-test 
 

 

where  is the sample mean from a sample X1, X2, … Xn, of size n, s is the 

standard error of the mean,  (or s ) is the estimate of the standard deviation 

of the population, and μ  is the population mean. 
 
 

T-Test Assumptions 

 

The first assumption made regarding t-tests concerns the scale of 

measurement. The assumption for a t-test is that the scale of measurement 

applied to the data collected follows a continuous or ordinal scale, such as 

the scores for an IQ test. 

 

The second assumption made is that of a simple random sample, that the 

data is collected from a representative, randomly selected portion of the total 

population. 

The third assumption is the data, when plotted, results in a normal 

distribution, bell-shaped distribution curve. 

 

The final assumption is the homogeneity of variance. Homogeneous, or 

equal, variance exists when the standard deviations of samples are 

approximately equal. 
 
 

T-Test Calculations 
 

Calculating a t-test requires three key data values. They include the 

difference between the mean values from each data set (called the mean 

difference), the standard deviation of each group, and the number of data 

values of each group. 



 59 

 

The outcome of the t-test produces the t-value. This calculated t-value is 

then compared against a value obtained from a critical value table (called the 

T-Distribution Table). This comparison helps to determine the effect of 

chance alone on the difference, and whether the difference is outside that 

chance range. The t-test questions whether the difference between the groups 

represents a true difference in the study or if it is possibly a meaningless 

random difference (hull hypothesis test). 

 

The formula (principle) for t-value calculation is as follows: 

 

where the  is the mean of sample; μ0 is the mean of the population;  s /  n  

is the Standard Error (SE) of the mean. It is the similar with the formula in 

the assumption of t-test. 
 
 
 

T-Distribution Tables 
 

The T-Distribution Table is available in one-tail and two-tails formats. The 

former is used for assessing cases which have a fixed value or range with a 

clear direction (positive or negative). For instance, what is the probability of 

output value remaining below -3, or getting more than seven when rolling a 

pair of dice? The latter is used for range bound analysis, such as asking if the 

coordinates fall between -2 and +2. 

 

The calculations can be performed with standard software programs that 

support the necessary statistical functions, like those found in MS Excel. 
 
 

T-Values and Degrees of Freedom 
 

The t-test produces two values as its output: t-value and degrees of freedom. 

The t-value is a ratio of the difference between the mean of the two sample 

sets and the variation that exists within the sample sets. While the numerator 

value (the difference between the mean of the two sample sets) is 

straightforward to calculate, the denominator (the variation that exists within 
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the sample sets) can become a bit complicated depending upon the type of 

data values involved. The denominator of the ratio is a measurement of the 

dispersion or variability. Higher values of the t-value, also called t-score, 

indicate that a large difference exists between the two sample sets. The 

smaller the t-value, the more similarity exists between the two sample sets. 

(A large t-score indicates that the groups are different or a small t-score 

indicates that the groups are similar.) 
 

Degrees of freedom refers to the values in a study that has the freedom to 

vary and are essential for assessing the importance and the validity of the 

null hypothesis. Computation of these values usually depends upon the 

number of data records available in the sample set. 
 
 
 

Explaining the T-Test 
 

Essentially, a t-test allows us to compare the average values of the two data 

sets and determine if they came from the same population. In the above 

examples, if we were to take a sample of students from class A and another 

sample of students from class B, we would not expect them to have exactly 

the same mean and standard deviation. Similarly, samples taken from the 

placebo-fed control group and those taken from the drug prescribed group 

should have a slightly different mean and standard deviation. 

 

Mathematically, the t-test takes a sample from each of the two sets and 

establishes the problem statement by assuming a null hypothesis that the two 

means are equal (Null hypothesis H0: μ=μ0 vs. alternative hypothesis 

H1: μ≠μ0). Based on the applicable formulas, certain values are calculated 

and compared against the standard values, and the assumed null hypothesis 

is accepted or rejected accordingly. 

 

If the null hypothesis qualifies to be rejected, it indicates that data readings 

are strong and are probably not due to chance (sampler error). The t-test is 

just one of many tests used for this purpose.  

 

Statisticians must additionally use tests other than the t-test to examine more 

variables and tests with larger sample sizes. For a large sample size, 

statisticians use a z-test. Other testing options include the chi-square test and 

the f-test. 
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There are three types of t-tests, and they are categorized as dependent and 

independent t-tests. 
 
 
KEY TAKEAWAYS 

 

A t-test is a type of inferential statistic used to determine if there is a 

significant difference between the means of two groups, which may be 

related in certain features. 

 

The t-test is one of many tests used for the purpose of hypothesis testing in 

statistics. 

 

Calculating a t-test requires three key data values. They include the 

difference between the mean values from each data set (called the mean 

difference), the standard deviation of each group, and the number of data 

values of each group. 

There are several different types of t-test that can be performed depending 

on the data and type of analysis required and they are categorized as 

dependent and independent t-tests.  
 
 

Ambiguous Test Results 
 

Consider that a drug manufacturer wants to test a newly invented medicine. 

It follows the standard procedure of trying the drug on one group of patients 

and giving a placebo to another group, called the control group. The placebo 

given to the control group is a substance of no intended therapeutic value 

and serves as a benchmark to measure how the other group, which is given 

the actual drug, responds. 

 

After the drug trial, the members of the placebo-fed control group reported 

an increase in average life expectancy of three years, while the members of 

the group who are prescribed the new drug report an increase in average life 

expectancy of four years. Instant observation may indicate that the drug is 

indeed working as the results are better for the group using the drug. 

However, it is also possible that the observation may be due to a chance 

occurrence, especially a surprising piece of luck. A t-test is useful to 

conclude if the results are actually correct and applicable to the entire 

population. 
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In a school, 100 students in class A scored an average of 85% with a 

standard deviation of 3%. Another 100 students belonging to class B scored 

an average of 87% with a standard deviation of 4%. While the average of 

class B is better than that of class A, it may not be correct to jump to the 

conclusion that the overall performance of students in class B is better than 

that of students in class A. This is because there is natural variability in the 

test scores in both classes, so the difference could be due to chance alone. A 

t-test can help to determine whether one class fared better than the other. 
 
 

Applications of t-test 
 

Make the interval estimation of population parameter, 
e.g. 95% distribution interval; mean of population. 
 
Determine if a mean of sample is representative  
of the mean of knowing population. 
 
Make a paired t-test, simply calculating the difference  
between paired observations (e.g., before and after) and 
then performs a 1-sample t-test on the differences. 

 t-test   
Compare two samples' arithmetic means and then  
to determine the null hypothesis value. 
 
Compare two samples' geometric means and then  
to determine the null hypothesis value. 
 
Use the t-tests for conducting hypothesis tests on  
the regression coefficients obtained in simple linear regression. 

 
Use the t-tests for conducting hypothesis tests on  
the regression coefficients obtained in multi-linear regression. 

 
'Student's' t Test (For Independent Samples): Use this test to 
compare two small sets of quantitative data when samples are 
collected independently of one another.  

 

(The z-score is often used in the z-test in standardized testing - the analog of 

the Student's t-test for a population whose parameters are known, rather than 

estimated. As it is very unusual to know the entire population, the t-test is 

much more widely used.) 
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Example 1: Interval estimation 
 

In statistics, interval estimation is the use of sample data to calculate an 

interval of possible values of an unknown population parameter; this is in 

contrast to point estimation, which gives a single value.  

 

The most prevalent forms of interval estimation are: confidence intervals; 

and credible intervals (a Bayesian method). Other forms include: likelihood 

intervals; and fiducial intervals. 

 

The t-test is used when the variable is numerical and only one population or 

group is being studied. It is common that the t-test is used in testing one 

population proportion or making the interval estimation of population 

parameter, e.g. 95% distribution interval; mean of population. 

For example, a sample of 144 with normal distribution, and mean: =537.8, 

standard deviation: =43.9, what is its mean in 95% confidence intervals? 

 

Normally, there are n - 1 degrees of freedom (with n being the total number 

of observations). Therefore, the degrees of freedom: v = n –1 = 144 –1 = 

143. Also, how a confidence or a probability level, e.g. =0.05 (95%), 

should be considered for testing. 
 

Use the v and a to find the t-value (t=1.979) from the t-table, and the 

following formula to calculate the mean of sample in 95% confidence 

intervals. 
 

 
 = 43.9/144   = 3.658 
 

 -1.979  = 537.8 – 1.979 x 3.658 = 537.8 – 7.24 = 530.6; 

 +1.979  = 537.8 + 1.979 x 3.658 = 537.8 + 7.24 = 545.0 
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Therefore, its mean in 95% confidence intervals is from 530.6 to 545.0. It’s 

as follows: 

(  -1.979  = 530.6,    +1.979  =545.0) = (530.6, 545.0) 
 
 
 

Example 2: Determine a mean 
 

The t-test could be used in determining if a mean of sample is representative 

of the mean of knowing population. (Null hypothesis: μ  = μ(0) ? ) 

 

Suppose you have a set of sample data: n=25,  =74.2, s = 6.5; and the 

mean of knowing population: μ0 = 72.  

Question: is the mean of the sample representative of the mean of knowing 

population? 

 

 

Solution:  

 

1st Making the null hypothesis and setting the test confidence level: 
 
H0: μ=72(μ0)  
H1: μ>72(μ0)  

 = 0.05 (95% confidence) 
 
 

2nd Calculating the t-value: 
 

   -  μ0  74.2 - 72 
  t =      =    =  1.692 

 s     n    6.5    25 

 
 

3rd Find the probability () of the t-value, which is the distance from the 

sample mean to the population mean in units of the standard error: 

 

With degrees of freedom,  =n-1=25-1=24, and t-table in a table of the 

standard normal distribution cumulative probability, we find that the 
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probability () of observing a standard normal value, 1.692, is 

approximately: 0.10 >  >0.05 (two-sided p-value).  

 

Finally, based on the confidence  = 0.05 and  > , it indicated that the hull 

hypothesis tested is not refuse the H0. 
 

We could also say that with 95% confidence we accept the null hypothesis 

that there are no difference between the mean of sample and the mean of 

population.  
 
 
 

Example 3: Testing the Mean Difference for Paired Data 
 

The correlated t-test is performed when the samples typically consist of 

matched pairs of similar units, or when there are cases of repeated measures. 

For example, there may be instances of the same patients being tested 

repeatedly - before and after receiving a particular treatment. In such cases, 

each patient is being used as a control sample against themselves. 

 

This method also applies to cases where the samples are related in some 

manner or have matching characteristics, like a comparative analysis 

involving children, parents or siblings. Correlated or paired t-tests are of a 

dependent type, as these involve cases where the two sets of samples are 

related. 

 

The formula for computing the t-value and degrees of freedom for a paired t-

test is: 
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where d is the mean of the difference between the variables of the matched 

pairs; d is the difference between the variables of the matched pairs; 

S(d) is the standard deviation of the differences of the paired data values; n is 

the sample size (the number of paired differences); n-1 is the degrees of 

freedom. 

Theologically, the μ(0) = 0, as it is supposed that the mean of population 

between the paired should be no difference. 
 
 

Question: 

 

Suppose we have 8 pairs of a research record as follows; is there the 

difference between the paired data?  ( μ(d)  = 0  ? ) 
 
 

No. of 
Pairs 

 
Normal  Treatment  

Difference 
(d) 

 
d² 

(1)  (2)  (3)  (4)=(2)-(3)  (5) 

         

1  3550  2450  1100  1210000 

2  2000  2400  -400  160000 

3  3000  1800  1200  1440000 

4  3950  3200  750  562500 

5  3800  3250  550  302500 

6  3750  2700  1050  1102500 

7  3450  2500  950  902500 

8  3050  1750  1300  1690000 

         

Sum  26550  20050  6500  7370000 
 

 

Note: the table above shown a sorted data:  

n=8;  d=6500;  d²=7370000;   d  = d / n = 6500/8 = 812.5. 
 
 

A statistics solution: 

 

The data are in pairs, but you’re really interested only in difference for each 

pair. So, you take the difference between the X1 and X2 (d value in the 

table) for each pair, and those paired differences make up your new set of 

data to work with. If the paired data are the same, the average of the paired 

differences should be 0. If the parried data are significant differences, the t-

test could provide a solution. 
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1st Making the null hypothesis and setting the test confidence level: 
 

H0: μ(d)  = 0  (the paired data are the same) 

H1: μ(d)  ≠ 0 (the paired data are different) 

 = 0.05 
 
 

2nd Calculating the t-value: 
 
 

   d² - (d)²/n    7370000-(6500) ²/8 

 S(d)  =      n-1  =       8-1       = 546.25 

 
 

 d – 0   812.50 - 0 

  t =    =      = 4.207 

 S(d)     n    546.25   8 

 
 
 

3rd Find the probability () of the t-value, which is the distance from the 

sample mean to the population mean in units of the standard error: 

 

With degrees of freedom,  =n-1=8-1=7, and t-table in a table of the 

standard normal distribution cumulative probability, we find that the 

probability () of observing a standard normal value, 4.207, is 

approximately: 0.005 >  >0.002 (two-sided p-value).  

 

Finally, based on the confidence  = 0.05 and  > , it indicated that the hull 

hypothesis tested refuse the H0 and accept H1. 

 

We could also say that with 95% confidence we refuse the null hypothesis 

that there are differences between the mean of the paired groups. 
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Example 4: Compare two samples' means  
 

This test is used when the variable is numerical and two populations or 

groups are being compared. Two separate random samples need to be 

selected, one from each population, in order to collect the data needed for 

this test. The null hypothesis is that the two population means are the same. 

The task of the test is to determine the null hypothesis:  μ(1)  = μ(2)  or  μ(1)  - 

μ(2)  = 0?  
 
 

A set of data as following records, X1 and X2, is there the difference between 

the two means? 
 
 

No. of 
samples 

1st sample 

X1 (1) 
X1²  

(1) x (1)  

2nd sample 

X2 (2) 
X2²  

(2) x (2) 

      

1 2.60 6.76  1.67 2.79 

2 3.24 10.50  1.98 3.92 

3 3.73 13.91  1.98 3.92 

4 3.73 13.91  2.33 5.43 

5 4.32 18.66  2.34 5.48 

6 4.73 22.37  2.50 6.25 

7 5.18 26.83  3.60 12.96 

8 5.58 31.14  3.73 13.91 

9 5.78 33.41  4.14 17.14 

10 6.40 40.96  4.17 17.39 

11 6.53 42.64  4.57 20.88 

12    4.82 23.23 

13    5.78 33.41 

      

Sum 51.82 261.10  43.61 166.71 

 

Note: the table above shown a sorted data:  

n=13;  X1=51.82;   X1²=261.10;  X2=43.61;   X2²=166.71. 
 
 

1st Making the null hypothesis and setting the test confidence level: 
 

H0: μ(1)  = μ(2)    

H1: μ(1)  ≠ μ(2)    

 = 0.05 
 

2nd The combined (or pooled) variance are involved in the calculation. The 

formula is combining two means and two degrees of freedom for the test: 
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   X1² - (X1)²/n1 +  X2² - ( X2)²/ n2 

S²c   =         (n1 –1)+ (n2  - 1)       

 

Where S²c is the combined sum of square, the combined sum of the square 

of variation, where variation is defined as the spread between each 

population mean. 
 

The sum of square (S²c) divides the combined degree of freedom then to get 

the combined Standard Error as follows: 
 

 S X1 -X2 =  S²c   ( 1/n1 + 1/ n2 ) 

 

Therefore, the t-test statistic comparing two means is: 
 

  1 - 2                  1 - 2  

t =  S  X1 -X2      =     [X1²-(X1)²/n1 +  X2²-( X2)²/n2]  x (1/n1+2/n2) 

                       (n1 –1) + (n2  - 1)           
 
 

3rd Sorting the variable in table and using the formula above to calculate: 
 

1 = X1/n1 = 51.82/11 = 4.711;  2 = X2/n2 = 43.61/13 = 3.355;  and  

 
 

  1 - 2   4.711 - 3.355  

t =  S  X1 -X2      =    [261.10-(51.82)²/11 + 166.71-(43.61)²/13]  x (1/11 + 1/13) 

         (11-1) + (13-1)                        
 

          = 2.539 
 

Finally, find the probability () of the t-value, which is the distance from the 

sample mean to the population mean in units of the standard error: 
 

With degrees of freedom,  =11+13-2=22, and t-table in a table of the 

standard normal distribution cumulative probability, we find that the 
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probability () of observing a standard normal value, 2.539, is 

approximately:  >0.01. The -value is less than  ( = 0.05). That means 

you do have enough evidence to reject H0 and accept H1. 
 
 

Example 5: Compare two samples' geometric means  
 

The test is similar with the test illustrated on the example four before, but it 

is to calculate or compare two samples' geometric means instead. The test is 

to determine the null hypothesis value. [μ(1)  = μ(2) ?] 
 

In mathematics, the logarithm is the inverse function to exponentiation. That 

means the logarithm of a given number x is the exponent to which another 

fixed number, the base b, must be raised, to produce that number x. In the 

simplest case, the logarithm counts the number of occurrences of the same 

factor in repeated multiplication; 

 

For example, since 1000 = 10x10x10 = 10³, the "logarithm base 10" of 1000 

is 3, or log10(1000) = log1010³ = 3.  

Log10150 (or Lg150) is approximately 2.176, which lies between 2 and 3, 

just as 150 lies between 10² = 100 and 10³ = 1000. 

 

So, if the variable of sample is the typical geometric mean, it could use the 

logarithm to inverse the variable for testing. 

 

For instance, a set of data as following records; is there the difference 

between the two means? 

 

No. of 
samples 

1st sample 

X1 (1) Lg(X1) (LgX1) ² 
 2nd sample 

X2 (2) Lg(X2) (LgX2) ² 
        

1 40 1.60 2.5666  50 1.70 2.8865 

2 20 1.30 1.6927  40 1.60 2.5666 

3 30 1.48 2.1819  30 1.48 2.1819 

4 25 1.40 1.9542  35 1.54 2.3841 

5 10 1.00 1.0000  60 1.78 3.1618 

6 15 1.18 1.3832  70 1.85 3.4044 

7 25 1.40 1.9542  30 1.48 2.1819 

8 30 1.48 2.1819  20 1.30 1.6927 

9 40 1.60 2.5666  25 1.40 1.9542 

10 10 1.00 1.0000  70 1.85 3.4044 

11 15 1.18 1.3832  35 1.54 2.3841 

12 30 1.48 2.1819  25 1.40 1.9542 

Sum 290 16.08 22.0464  490 18.91 30.1569 
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Note: the table above shown a sorted data:  

n=12;  X1=290; Lg(X1) =16.08; Lg( X1²)=22.046;  X2=490; Lg(X2) 

=18.91;  Lg( X2²)=30.157. 
 
 

1st Making the null hypothesis and setting the test confidence level: 
 

H0: μ(1)  =  μ(2)    

H1: μ(1)    ≠ μ(2)    

 = 0.05 
 

The t-test statistic comparing two means is: 
 

  1 - 2                  1 - 2  

t =  S  X1 -X2      =     [X1²-(X1)²/n1 +  X2²-( X2)²/n2]  x (1/n1+2/n2) 

                       (n1 –1)+ (n2  - 1)           
 

2nd To calculate it, do the following: 

 

G1 (geometric mean of X1): LgG1= (Lg X1) / n1 = 16.0846/12=1.3404;  

Lg(X1) = 16.08; (LgX1) ² = 22.0464 

 

G2 (geometric mean of X2): LgG2= (Lg X2) / n2 = 18.9087/12=1.5757;  

Lg(X2) = 18.91; (LgX2) ² = 30.1569 
 

  1 - 2   1.3404 - 1.5757  

t =  S  X1 -X2      =   [22.0454-(16.08)²/12+30.1569-(18.91)²/12] x (1/12 + 1/12 ) 

         (12-1)+(12-1)                        

 

                    = - 2.934 

 

3rd Find the probability () of the t-value, which is the distance from the 

sample mean to the population mean in units of the standard error: 

 

With degrees of freedom,  =12+12-2=22, and t-table in a table of the 

standard normal distribution cumulative probability, we find that the 
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probability () of observing a standard normal value, |-2.934|, by using the 

absolute value to find , is approximately: 0.01>>0.005. The -value is less 

than  ( = 0.05). That means you do have enough evidence to reject H0 and 

accept H1. 
 
 

Example 6: Compare the two means of two large samples (>50 or >100) 
 

The relationship between margin of error and sample size is simple: As the 

sample size increases, the margin of error decreases. Looking at formula for 

standard error for the sample mean: 
 

    

x =    

  n   

 

where  is the standard deviation of the population; n is the size (number of 

observations) of the sample.  

 

 

You may notice that it has an n in denominator of a fraction; this is the case 

for most any standard error formula. As n increases, the denominator of this 

fraction increases, which makes the overall fraction get smaller. That makes 

the margin of error smaller and results in a narrower confidence interval. 

Therefore, you can use much simpler method to compare the means of two 

large samples: 
 
 

  1 - 2  1 - 2 

u =  S X1 -X2      =     S²1             S²1 

    n1         n2 

 
 

A set of data: 

 

1st sample:  n1 =156, 1=465.13,  S1=54.80 

2nd sample:  n2 =74, 2=422.16,  S2=44.20 
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1st Making the null hypothesis and setting the test confidence level: 
 

H0: μ(1)  =  μ(2)    

H1:μ(1)    ≠ μ(2)    

 = 0.05 
 
 

2nd Using the following simple formula of the combined (or pooled) variance 

for the calculation, the formula is combining two means and two degrees of 

freedom for the test: 
 

   1 - 2         465.13 - 422.16 

u =      S²1            S²1  =   (54.80) ²     (44.20) ²   

   n1      n2       156          74 

 

     = 6.360 
 

3rd Find the probability () of the t-value, which is the distance from the 

sample mean to the population mean in units of the standard error: 

 

With degrees of freedom,  = , and t-table in a table of the standard normal 

distribution cumulative probability, we find that the probability () of 

observing a standard normal value, 6.360, is approximately: 0.001>. The -

value is less than  ( = 0.05). That means you do have enough evidence to 

reject H0 and accept H1. 
  
 
 

Homoscedasticity 
 

In statistics, a sequence of random variables is homoscedastic if all its 

random variables have the same finite variance. This is also known as 

homogeneity of variance. The complementary notion is called 

heteroscedasticity. The spellings homoskedasticity and heteroskedasticity 

are also frequently used. 
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The t-test analyses require homoscedasticity, otherwise the adjusted t’-test 

may be applied.  
 
 

Example 7:  Calculation and test of homoscedasticity 
 
 

Suppose we have a set of data (one sample is much more than another) as 

follows: 

Sample 1:  n1 =10, 1=6.21,  S1=1.79 (S1: variance of sample 1) 

Sample 2:  n2 =50, 2=4.34,  S2=0.56 (S2: variance of sample 2) 
 
 

1st Making the null hypothesis and setting the test confidence level: 
 

H0: μ(1)  =  μ(2)    

H1:μ(1)    ≠ μ(2)    

 = 0.05 
 

2nd Using the F-test to compare the two variances.  
 

F = S²1 / S²1 = (1.79) ² / (0.56) ² = 10.22 

 

Degree of freedom: 1 = 10-1 = 9, 2 = 50-1 = 49; Find the probability () of 

the f-value from F-table: 0.05 > , and with  = 0.05,  > , refuse the H0 

and accept H1. It indicated that the two samples don’t have the same finite 

variance. 
 
 

3rd Using the following formula to get t’ value and calculating the adjusted 

t0.05 value. 
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    1 - 2        6.21 – 4.34 

t’ =     S²1            S²1 =  (1.79) ²    (0.56) ² 

    n1           n2      10   50 

 

       = 3.272 
 

Based on the testing level of  ( = 0.05), from t-table with 1 = 9, 2 = 49, 

find the value: t0.05,9  = 2.262, t0.05,49  = 2.009. 
 

To make an adjustment by multiply t0.05,9  = 2.262,  t0.05,49  = 2.009 (as a 

weight power factor) with  S²X1, S²X2 respectively: 
 

S²X1  = (1.79)²/10 = 0.3204  

S²X2  = (0.56)²/50 = 0.006272 

 
 

  (S²X1) (t0.05,X1) + (S²X2) (t0.05,x2) 

t’0.05 =      

      S²X1  + S²X2  

 
 
 (0.3204)( 2.262) + (0.006272)( 2.009) 

t’0.05 =       =  2.257 

  0.3204 + 0.006272 
 
 

Based on t’ (3.272) > t’0.05 (2.257); then 0.05 > ; ( = 0.05, from t-table with 1 

= 9, 2 = 49, find the value:  t0.05,9  = 2.262,  t0.05,49  = 2.009) 

 

With  = 0.05; reject the H0 and accept H1. That means you do have enough 

evidence to reject H0 – difference between the two sample means.  
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Chapter 5 
 
 

Analysis of Variance (ANOVA) 
 

An analysis of variance (ANOVA) is the synthesis of several ideas and it is 

used for multiple purposes. As a consequence, it is difficult to define 

concisely or precisely. To conduct a test with three or more means, one must 

use ANOVA. ANOVA is a collection of statistical models and their 

associated estimation procedures used to analyze the differences among 

group means in a sample, and an analysis tool used in statistics that splits an 

observed aggregate variability found inside a data set into two parts: 

systematic factors and random factors. The systematic factors have a 

statistical influence on the given data set, while the random factors do not.  

 

 

ANOVA is a form of statistical hypothesis testing heavily used in the 

analysis of experimental data. A test result (calculated from the null 

hypothesis and the sample) is called statistically significant if it is deemed 

unlikely to have occurred by chance, assuming the truth of the null 

hypothesis. A statistically significant result, when a probability (p-value) is 

less than a pre-specified threshold (significance level), justifies the rejection 

of the null hypothesis, but only if the a priori probability of the null 

hypothesis is not high. 

 

In the typical application of ANOVA, the null hypothesis is that all groups 

are random samples from the same population. For example, when studying 

the effect of different treatments on similar samples of patients, the null 

hypothesis would be that all treatments have the same effect (perhaps none). 

Rejecting the null hypothesis is taken to mean that the differences in 

observed effects between treatment groups are unlikely to be due to random 

chance. 
 

The terminology of ANOVA is largely from the statistical design of 

experiments. The experimenter adjusts factors and measures responses in an 

attempt to determine an effect. Factors are assigned to experimental units by 

a combination of randomization and blocking to ensure the validity of the 

results. Blinding keeps the weighing impartial. Responses show a variability 

that is partially the result of the effect and is partially random error. 
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"Classical" ANOVA 
 

"Classical" ANOVA for balanced data does three things at once: 

1. As exploratory data analysis, an ANOVA employs an additive data 

decomposition, and its sums of squares indicate the variance of each 

component of the decomposition (or, equivalently, each set of terms 

of a linear model). 

2. Comparisons of mean squares, along with an F-test ... allow testing of 

a nested sequence of models. 

3. Closely related to the ANOVA is a linear model fit with coefficient 

estimates and standard errors. 

 

In short, ANOVA is a statistical tool used in several ways to develop and 

confirm an explanation for the observed data. Additionally, it is 

computationally elegant and relatively robust against violations of its 

assumptions. 

 

ANOVA provides strong (multiple sample comparison) statistical analysis. 

It has been adapted to the analysis of a variety of experimental designs. 

As a result:  " ANOVA " is probably the most useful technique in the field 

of statistical inference." 
 

  Compare more than two groups,  
  e.g. >two means; multiple sets of matched samples. 
 

Analysis of variance    Test the null hypothesis that two populations among 
 (ANOVA)     several numbers of populations has same average. 
 
      The test statistic for ANOVA is F-test. 
      (Bartlett's test for homogeneity of variances) 
 

 

Bartlett's test 

Bartlett's test for homogeneity of variances is used to test that variances are 

equal for all samples. It checks that the assumption of equal variances is true 

before running certain statistical tests like the One-Way ANOVA. It's used 

when you're fairly certain your data comes from a normal distribution. 

Bartlett's test is used to test the null hypothesis, H0 that all k population 

variances are equal against the alternative that at least two are different. 
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Assumptions 
 

ANOVA has been studied from several approaches, the most common of 

which uses a linear model that relates the response to the treatments and 

blocks. Note that the model is linear in parameters but may be nonlinear 

across factor levels. Interpretation is easy when data is balanced across 

factors but much deeper understanding is needed for unbalanced data. 

 

The analysis of variance can be presented in terms of a linear model, which 

makes the following assumptions about the probability distribution of the 

responses: 

 

Independence of observations - this is an assumption of the model that 

simplifies the statistical analysis. 

Normality - the distributions of the residuals are normal. 

Equality (or "homogeneity") of variances, called homoscedasticity - the 

variance of data in groups should be the same. 

 

Summary of assumptions 

The normal-model based ANOVA analysis assumes the independence, 

normality and homogeneity of variances of the residuals. The 

randomization-based analysis assumes only the homogeneity of the 

variances of the residuals (as a consequence of unit-treatment additivity) and 

uses the randomization procedure of the experiment. Both these analyses 

require homoscedasticity, as an assumption for the normal-model analysis 

and as a consequence of randomization and additivity for the randomization-

based analysis. 
 

However, studies of processes that change variances rather than means 

(called dispersion effects) have been successfully conducted using ANOVA. 

There are no necessary assumptions for ANOVA in its full generality, but 

the F-test used for ANOVA hypothesis testing has assumptions and practical 

limitations which are of continuing interest. 

 

Problems which do not satisfy the assumptions of ANOVA can often be 

transformed to satisfy the assumptions. The property of unit-treatment 

additivity is not invariant under a "change of scale", so statisticians often use 

transformations to achieve unit-treatment additivity. If the response variable 
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is expected to follow a parametric family of probability distributions, then 

the statistician may specify (in the protocol for the experiment or 

observational study) that the responses be transformed to stabilize the 

variance. Also, a statistician may specify that logarithmic transforms be 

applied to the responses, which are believed to follow a multiplicative 

model. According to Cauchy's functional equation theorem, the logarithm is 

the only continuous transformation that transforms real multiplication to 

addition. 
 
 

Characteristics 
 

ANOVA is used in the analysis of comparative experiments, those in which 

only the difference in outcomes is of interest. The statistical significance of 

the experiment is determined by a ratio of two variances. This ratio is 

independent of several possible alterations to the experimental observations: 

Adding a constant to all observations does not alter significance. Multiplying 

all observations by a constant does not alter significance. So ANOVA 

statistical significance result is independent of constant bias and scaling 

errors as well as the units used in expressing observations. In the era of 

mechanical calculation it was common to subtract a constant from all 

observations (when equivalent to dropping leading digits) to simplify data 

entry. This is an example of data coding. 
 
 

The calculations of ANOVA can be characterized as computing a number of 

means and variances, dividing two variances and comparing the ratio to a 

handbook value to determine statistical significance. Calculating a treatment 

effect is then trivial: "the effect of any treatment is estimated by taking the 

difference between the mean of the observations which receive the treatment 

and the general mean". 

 

The fundamental technique is a partitioning of the total sum of squares SS 

into components related to the effects used in the model, for example, the 

model for a simplified ANOVA with one type of treatment at different 

levels. 
 

SS total = SS error + SS treatment   

 

SS total = X² - (X)²/n 
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The F-test 
 

The F-test is used for comparing the factors of the total deviation. For 

example, in one-way, or single-factor ANOVA, statistical significance is 

tested for by comparing the F test statistic as follows. 
 
 

Variance between the treatments MS treatments         SS treatments / (k - 1) 

  F =             =      = 

   Variance within the treatments    MS error  SS error / (N - k) 
 
 

Where, MS is mean square, k = number of treatments and n = total number 

of cases to the F-distribution with k - 1, n - k degrees of freedom. Using the 

F-distribution is a natural candidate because the test statistic is the ratio of 

two scaled sums of squares each of which follows a scaled chi-squared 

distribution. 
 
 

Example 1: An analysis of variance for more than two means 
 

Suppose we have the three random samples, each group with six individual 

numbers as follows: 
 

   3 groups of treatments (samples) 
 

 

 X1 X1² X2 X2² X3 X3² X X² 

       X1+X2+X3 X1²+X2²+X3² 

1 3.3 10.89 4.4 19.36 3.60 12.96 11.3 43.21 

2 3.6 12.96 4.4 19.36 4.40 19.36 12.4 51.68 

3 4.3 18.49 3.4 11.56 5.10 26.01 12.8 56.06 

4 4.1 16.81 4.2 17.64 5.00 25.00 13.3 59.45 

5 4.2 17.64 4.7 22.09 5.50 30.25 14.4 69.98 

6 3.3 10.89 4.2 17.64 4.70 22.09 12.2 52.62 

X 22.80  25.30  28.3  76.40  

X²  87.68  107.65  135.67  331.00 

(X)² 519.84  640.09  800.89  5836.96  

N or n 6  6  6  18  

(X)²/n 86.640  106.682  133.482  324.276  

 

Note: the table above showed a sorted data.  
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1st Making the null hypothesis and setting the test confidence level: 
 

H0: μ(1)  = μ(2)  = μ(3)    

H1: μ(1) ≠ μ(2)  ≠ μ(3)    

 = 0.05 
 
 

2nd To calculate it, do the following: 
 

SS total = X² - (X)²/N  

= (87.68+107.65+135.67) - (76.40) ² /18 

= 331.00 - 324.276  

= 6.724 

 

SS treat = (X)²/ni - (X)²/N  

 = (519.84+640.09+800.89)/6 - (76.40) ²/18 

= 326.804 - 324.276  

= 2.527 

 

SS error = SS total - SS treat  

= 6.724 - 2.528  

= 4.197 

 

MS treat = SS treat / (k-1) = 2.527 / (3 -1) = 1.263 

 

MS error = SS error / (N-k) = 4.197 / (18 -3) = 0.280 

 
 

 MS treat  1.263 
F =    =     = 4.511 
 MS error  0.280 

 
 

3rd Find the probability () of the F-value: 

 

With degrees of freedom,  i = 3 -1 = 2,   j = 18-3 = 15, and F-table, we find 

that the probability () of observing a standard normal value, 4.511, is 

approximately: 0.05>>0.01. The -value is less than  (0.05) or  >. That 

means you do have enough evidence to reject H0 and accept H1. 
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It means that there are the statistic significant differences among the groups, 

but it doesn’t tell us the difference between each other. 
 
 

Example 2: An analysis of variance for the placebo data 
 

Suppose we have a set of data: three random sample, each group with six 

individual numbers, as follows:  

 

There 5 individual in each group, 1 individual is a placebo, with a total 6 

groups in total 30 individual. 
 
 

Placebo          Treatments (A, B, C and D) 
 
 

Groups Xp Xp² XA XA² XB XB² XC XC² XD XD² Total Total 

             

1 1.40 1.96 4.10 16.81 1.90 3.61 1.80 3.24 2.00 4.00 11.20 29.62 

2 1.50 2.25 3.60 12.96 1.90 3.61 2.30 5.29 2.30 5.29 11.60 29.40 

3 1.50 2.25 4.30 18.49 2.10 4.41 2.30 5.29 2.40 5.76 12.60 36.20 

4 1.80 3.24 3.30 10.89 2.40 5.76 2.50 6.25 2.60 6.76 12.60 32.90 

5 1.50 2.25 4.20 17.64 1.80 3.24 1.80 3.24 2.60 6.76 11.90 33.13 

6 1.50 2.25 3.30 10.89 1.70 2.89 2.40 5.76 2.10 4.41 11.00 26.20 

             

X 9.20  22.80  11.80  13.10  14.00  70.90  

X²  14.20  87.68  23.52  29.07  32.98  187.45 

             

(X)² 84.64  519.84  139.24  171.61  196.00  5026.81  

             

N or n 6  6  6  6  6  30  

X / n 1.5333  3.8  1.9667  2.1833  2.3333  2.3633       

             

(X)²/N 14.107  86.640  23.207  28.602  32.667  167.56  

 

Note: the table above shown a sorted data.  

 

For more details in regarding to data sorting, you may view the illustrations 

as follows:  
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1st Making the null hypothesis and setting the test confidence level: 
 

H0: μ(1)  = μ(2)  = μ(3)   = μ(4)   = μ(5)    0r   ( μ(i)  = 0) 

H1: μ(1)  ≠ μ(2)  ≠ μ(3)  ≠  μ(4)   ≠ μ(5)    0r   ( μ(i)  ≠ 0) 

 = 0.05 
 
 

2nd To calculate it, do the following: 
 

SS total = X² - (X)²/N 

SS treat = (X)²/ni - (X)²/N 

SS placebo = (X)²/k - (X)²/N 

 
 

SS total = X² - (X)²/N  
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= (14.20+87.68+23.52+29.07+32.98) - (70.90) ² /30 

= 187.450 - 167.560  

= 19.890 

 

SS treat = (X)²/ni - (X)²/N  

= (9.20²+22.80²+11.80²+13.10²+14.00²)/6 - (70.90) ²/30 

 = (84.64+519.84+139.24+171.61+196.00)/6 – 5026.810/30 

= 185.222 - 167.560  

= 17.662 

 

SS placebo = (X)²/k - (X)²/N  

 = (11.20²+11.60²+12.60²+12.60²+11.90²+11.00²)/(6-1) - (70.90) ²/30 

= (125.44+134.56+158.76+158.76+141.61+121.00)/5 - 167.560  

= 168.026 - 167.560 

= 0.466 

 

SS error = SS total - SS treat - SS placebo 

= 19.890 - 17.662 - 0.466 

= 1.762 

 

 error =  total -  treat -  placebo = (30 –1) – (5-1) – (6 –1) = 20  

 
 
 

MS treat = SS treat /  treat  = 17.662 / (5 -1) = 4.416 

 

MS placebo = SS placebo /  placebo  = 0.466 / (6 -1) = 0.0932 

 

MS error = SS error /  error  = 1.762 / 20 = 0.0881 

 
 

 MS placebo  0.0932 
F =    =     = 1.058 
 MS error  0.0881 

 
 
 

3rd Find the probability () of the F-value: 
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With degrees of freedom,  placebo = 5,  error = 20; and F-table, we find that 

the probability () of observing a standard normal value, 1.058, is 

approximately: >0.05.  = 0.05, and >. That means you don’t have 

enough evidence to reject H0 and therefore accept H0. 

 

As the MS placebo and MS error have no significant statistic meaning, it is 

needed to make further testing – error-pooled.           
 

 

4th Calculate error-pooled testing: 
 

SS error-pooled = SS error + SS placebo = 1.762 + 0.466 = 2.228 

 

 error-pooled =  error +   placebo = 20 +  5 = 25 

 

MS error-pooled = SS error-pooled /  error-pooled  = 2.228 / 25 = 0.0891 

 
 

 MS treat  4.416 
F =     =    = 49.562 
        MS error-pooled  0.0891 

 
 

With degrees of freedom,  error-pooled = 25, and F-table, we find that the 

probability () of F-value, 49.562, is approximately: 0.01>>.  = 0.05, and 

 > . That means you do have enough evidence to reject H0 and therefore 

accept H1- there are statistic significant difference among the groups. 
 
 
 

Newman-Keuls Method (q-test) 
 
 

The Newman-Keuls or Student-Newman-Keuls (SNK), simply q-test, 

method is a stepwise multiple comparisons procedure used to identify 

sample means that are significantly different from each other. This 

procedure is often used as a post-hoc test whenever a significant difference 

between three or more sample means has been revealed by an analysis of 

variance (ANOVA). The q-test method uses different critical values for 

different pairs of mean comparisons. Thus, the procedure is more likely to 
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reveal significant differences between group means and to commit type I 

errors by incorrectly rejecting a null hypothesis when it is true.  
 
 
 

Required assumptions 

 

The assumptions of the q-test are essentially the same as for an independent 

groups t-test: normality, homogeneity of variance, and independent 

observations. The test is quite robust to violations of normality. Violating 

homogeneity of variance can be more problematic than in the two-sample 

case since the standard error of the mean (SEM) is based on data from all 

groups. The assumption of independence of observations is important and 

should not be violated. 

 

 

 

Procedures 

 

The q-test method employs a stepwise approach when comparing sample 

means. Prior to any mean comparison, all sample means are rank-ordered in 

ascending or descending order, thereby producing an ordered range (p) of 

sample means. A comparison is then made between the largest and smallest 

sample means within the largest range. Assuming that the largest range is 

four means (or p = 4), a significant difference between the largest and 

smallest means as revealed by the q-test method would result in a rejection 

of the null hypothesis for that specific range of means. The next largest 

comparison of two sample means would then be made within a smaller 

range of three means (or p = 3). Unless there is no significant difference 

between two sample means within any given range, this stepwise 

comparison of sample means will continue until a final comparison is made 

with the smallest range of just two means. If there is no significant 

difference between the two sample means, then all the null hypotheses 

within that range would be retained and no further comparisons within 

smaller ranges are necessary. 
 
 

 

The q-test formula:  
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where q represents the studentized range value,  A and B are the largest 

and smallest sample means within a range, MS error (standard error of the 

mean, SEM) is the error variance taken from the ANOVA table, and n is the 

sample size (number of observations within a sample).  
 
 

Example 3: Compare each of two means among the multiple samples 
 

Based on the results from the test in Example 2 before, the further q-test 

method for comparing the each other and finding the statistic significant 

difference between the groups can be conducted. 

 

We have calculated the following 5 means from the five samples in Example 

2.  
 
X / n 1.5333  3.800  1.9667  2.1833  2.3333  

 
 

1st Rank the means from higher to lower and sort the data: 
 
X / n 3.800  2.333  2.183  1.967  1.533  

 
 

The table below has showed the chance of comparing with each other: 
 
  #1 #2 #3 #4 #5 

  3.800 2.333 2.183 1.967 1.533 

#1 3.800      

#2 2.333      

#3 2.183      

#4 1.967      

#5 1.533      

 
 

Or based on the following calculation: 
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   5! 

C5² =      = 10 

         2! (5-2)! 
 
 

Calculate the difference between the two means compared: A- B 

 
  #1 #2 #3 #4 #5 

  3.800 2.333 2.183 1.967 1.533 

#1 3.800  1.467 1.617 1.833 2.267 

#2 2.333   0.150 0.366 0.800 

#3 2.183    0.216 0.650 

#4 1.967     0.434 

#5 1.533      

 
 

e.g.  (#1)- (#2) = 3.800-2.333=1.467; (#1)- (#3) = 3.800-2.183=1.617. 

 
 
 

2nd To calculate it, do the following: 
 
 

From the 4-th step of example 2: 
 

SS error-pooled = SS error + SS placebo = 1.762 + 0.466 = 2.228 

 

 error-pooled =  error +   placebo = 20 +  5 = 25 

 
 

The standard error-pooled mean: 
 

MS error-pooled = SS error-pooled /  error-pooled  = 2.228 / 25 = 0.0891 

 

S XA -XB  =   0.0891/6   = 0.122 

 
 

3rd Find the probability () of the F-value: 

 

Determine the number (a factor for the p value) of groups included in 

comparing each other: 
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a=5: 
 

  #1 #2 #3 #4 #5 a 
  3.800 2.333 2.183 1.967 1.533  

#1 3.800  1.467 1.617 1.833 2.267 5 

 
 
a=4: 

  #1 #2 #3 #4 #5 a 
  3.800 2.333 2.183 1.967 1.533  

#1 3.800  1.467 1.617 1.833  4 

#2 2.333   0.150 0.366 0.800 4 

 
 
a=3: 

  #1 #2 #3 #4 #5 a 
  3.800 2.333 2.183 1.967 1.533  

#1 3.800  1.467 1.617   3 

#2 2.333   0.150 0.366  3 

#3 2.183    0.216 0.650 3 

 
 
a=2: 

  #1 #2 #3 #4 #5 a 
  3.800 2.333 2.183 1.967 1.533  

#1 3.800  1.467    2 

#2 2.333   0.150   2 

#3 2.183    0.216  2 

#4 1.967     0.434 2 

 
 
 

The q-test method for comparing the each other (q-value list on the 

following table): 
 
 

  A- B    A  - B  

q =  S XA -XB       =    MS error  1         1 

       2       (  nA        nB ) 

 
 

A with B A- B # of a q value p=0.05 p=0.01 P 
(1) (2) (3) (4) (5) (6) (7) 
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1 w. 5 2.267 5 18.582 4.23 5.29  

1 w. 4 1.833 4 15.025 3.96 5.02  

1 w. 3 1.617 3 13.254 3.58 4.64  

1 w. 2 1.467 2 12.025 2.95 4.02  

2 w. 5 0.800 4 6.557 3.96 5.02  

2 w. 4 0.366 3 3.000 3.58 4.64  

2 w. 3 0.150 2 1.230 2.95 4.02  

3 w. 5 0.650 3 5.328 3.58 4.64  

3 w. 4 0.210 2 1.770 2.95 4.02  

4 w. 5 0.434 2 3.557 2.95 4.02  

 

The mark with “ ” indicated the significant meaning of comparing test. 

Note: the “V error” (degree of freedom) is by using the closing 20 instead of 

25 for finding the q-table value as the q-table only showed the value of the 

n=20. 
 
 

The q-value and the probability (p) indicated that there are statistic 

significant differences between sample 1 with sample 5, sample 1 with 

sample 4, sample 1 with sample 3, sample 1 with sample 2, sample 2 with 

sample 5, sample 3 with sample 5, and sample 4 with sample 5. The others 

have no significant difference in their mean. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 91 

Chapter 6 
 
 

Binomial Distribution 
 
 

In probability theory and statistics, the binomial distribution with parameters 

n and p is the discrete probability distribution of the number of successes in 

a sequence of n independent experiments, each asking a yes-no question, and 

each with its own boolean-valued outcome: success/yes/true/one (with 

probability p) or failure/no/false/zero (with probability q = 1 - p). A single 

success/failure experiment is also called a Bernoulli trial or Bernoulli 

experiment and a sequence of outcomes is called a Bernoulli process; for a 

single trial, i.e., n = 1, the binomial distribution is a Bernoulli distribution. 

The binomial distribution is the basis for the popular binomial test of 

statistical significance. 

 

The binomial distribution is frequently used to model the number of 

successes in a sample of size n drawn with replacement from a population of 

size N. If the sampling is carried out without replacement, the draws are not 

independent and so the resulting distribution is a hypergeometric 

distribution, not a binomial one. However, for N much larger than n, the 

binomial distribution remains a good approximation, and is widely used. 
 
 

Probability Mass Function 
 

A probability mass function (PMF) is a function that gives the probability 

that a discrete random variable is exactly equal to some value. Sometimes it 

is also known as the discrete density function. The probability mass function 

is often the primary means of defining a discrete probability distribution, and 

such functions exist for either scalar or multivariate random variables whose 

domain is discrete. 
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A probability mass function differs from a probability density function 

(PDF) in that the latter is associated with continuous rather than discrete 

random variables. A PDF must be integrated over an interval to yield a 

probability, e.g., the price of a stock or ETF. PDFs are plotted on a graph 

typically resembling a bell curve, with the probability of the outcomes lying 

below the curve. 

 

A typical PDF example:  

Suppose bacteria of a certain species typically live 4 to 6 hours. The 

probability that a bacterium lives exactly 5 hours is equal to zero. A lot of 

bacteria live for approximately 5 hours, but there is no chance that any given 

bacterium dies at exactly 5.0000000000... hours. However, the probability 

that the bacterium dies between 5 hours and 5.01 hours is quantifiable. 

Suppose that the answer is 0.02 (i.e., 2%), then the probability that the 

bacterium dies between 5 hours and 5.001 hours might be about 0.002, since 

this time interval is one-tenth as long as the previous. Similarly, the 

probability that the bacterium dies between 5 hours and 5.0001 hours might 

be about 0.0002, and so on. 

 

Unlike a probability, a probability density function can take on values 

greater than one; for example, the uniform distribution on the interval [0, ½] 

has probability density f (x) = 2 for 0 ≤ x ≤ 1/2 and f (x) = 0 elsewhere. 

 

 

The graph of a probability mass function:  

All the values of this function must be non-negative and sum up to 1. The 

value of the random variable having the largest probability mass is called the 

mode, e.g. the mode of the following example is 0.512. 
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Suppose a biased coin comes up heads with probability 0.8 ( =0.8) when 

tossed. The all probability of 3 coins (n=3) in tosses is 
 

 
 

 
Comparing with 0.008, 0.096 and 0.384, the probability of 0.512 is the 

mode. 
 
 

Binomial Distribution Formulation 
 

Probability mass function is the probability distribution of a discrete random 

variable, and provides the possible values and their associated probabilities. 

It is the function p: defined by 
 

           
  
 

   :probability  X = 0, 1, 2, …, n       
  
 
 

Example 1: a probability calculation 
 

Suppose a biased coin comes up heads with probability 0.3 ( =0.3) when 

tossed. The probability of seeing exactly 4 heads (x=4) in 6 tosses (n=6) is 
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Suppose a test-positive rate is 20% in a population, if you take 10 samples 

from this population, (1) what is the possibility of 8 samples being test-

positive exactly? (2) what is the possibility of 1 sample being test-positive 

most likely? (3) what is the possibility of 8 samples being test-positive at 

least? 
 

(1) p(8) = [10!/8!(10-8)!] x (0.8)²(0.2)⁸ = 0.00007373 

(2) p(1) = p(0) + p(1) = 0.8(0.8)⁹+[10!/1!(10-1)!] x (0.8)⁹(0.2)⁸ = 0.3758 

(3) Q(8) = p(8)+(p9)+(10) = 0.00007373+[10!/9!(10-9)!] x (0.8)(0.2)⁹+(0.2)(0.2)⁹ 
             = 0.00007793 
 
 

Poisson Approximation 
 

The binomial distribution converges towards the Poisson distribution as the 

number of trials goes to infinity while the product np remains fixed or at 

least p tends to zero. Therefore, the Poisson distribution with parameter = 

np can be used as an approximation to B(n, p) of the binomial distribution if 

n is sufficiently large and p is sufficiently small. According to two rules of 

thumb, this approximation is good if n = 20 and p = 0.05, or if n = 100 and 

np = 10. 

 

Poisson binomial distribution 

The binomial distribution is a special case of the Poisson binomial 

distribution, or general binomial distribution, which is the distribution of a 

sum of n independent non-identical Bernoulli trials B(pi). 

 

Poisson Approximation to the Binomial 

When the value of n in a binomial distribution is large and the value of p is 

very small, the binomial distribution can be approximated by a Poisson 
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distribution. If n > 20 and np < 5 OR nq < 5 then the Poisson is a good 

approximation. 
 
 

Normal approximation 

If n is large enough, then the skew of the distribution is not too great. In this 

case a reasonable approximation to B(n, p) is given by the normal 

distribution and this basic approximation can be improved in a simple way 

by using a suitable continuity correction. The basic approximation generally 

improves as n increases (at least 20) and is better when p is not near to 0 or 

1. 
 
 

Example 2:  Mean and Standard Variance of binomial distribution 
 

Suppose a biased coin comes up heads with probability 0.8 ( =0.8) when 

tossed. The all probability of 3 coins (n=3) in tosses is 

 
 
 

X =p(x) X X 

(1) (2) (3) (4) 
0 0.008 0 0 

1 0.096 0.096 0.096 

2 0.384 0.768 1.536 

3 0.512 1.536 4.608 

    

Sum =1 2.4000 6.2400 

Note: 

Column 3 (X) = Column 1 x Column 2; Column 4 (X) = accumulation 

of X. 

 

The probability would be sorted as the table above and calculated by 

following formula: 
 

  X    2.4000 

Mean   =   =      = 2.4 

          1 
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      X² - (X)²/     6.24 - (2.4)²/1 

Standard Variance   =      =          = 0.69   

                   1 

 
 

 = n = 3 x 0.8 = 2.4 
 

 =  n(1-)     =     3 x 0.8 (1- 0.8)   =  0.69 

 
 

If using the rate (%), then 
 

p =  

 

p = (1-)      

 

When n is known, the parameter p can be estimated using the proportion of 

successes: p=x/n. This estimator is found using maximum likelihood 

estimator and also the method of moments. This estimator is unbiased and 

uniformly with minimum variance, proven using Lehmann-Scheff theorem, 

since it is based on a minimal sufficient and complete statistic. It is also 

consistent both in probability and in MS error. 
 
 

If using the sample for the population rate (%), then 
 

Sp    =   p(1-p) / n     

 
 
 

Applications 
 
 

Statistical Inference (Estimation of parameters) 
 

Confidence intervals  (Estimation of Interval):   

 

(p-aSp,  p+aSp )  
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Example 3: Confidence interval 
 

Suppose you have 8 test-negative results from 10 samples of a population, 

what is 95% confidence interval for this population? 

 

n = 10, X = 8; Using x =(10-8)=2 and the percentage table of confidence 

interval, an interval estimate with a specific level of confidence - percentage 

table, to find the range is between 3 to 56; then calculating by 100-3=97 and 

100-56=44, the 95% confidence interval for this population is 44—97%. 
 
 

Example 4: Comparing of the two means 
 

Sample A: a sample of 80, with test positive (+) 23, positive rate 28.75%; 

Sample B: a sample of 85, with test positive (+) 13, positive rate 15.29%; 

Q: is there the difference between two rates? 

 

1st Making the null hypothesis and setting the test confidence level: 
 

H0: p1 = p2 

H1: p1 ≠ p2 

 = 0.05 

 

Formula: 

  p1 - p2 

      u =   

    pc ( 1- pc )  (1/n1 + 1/n2) 
 

where, p1, p2 are the probability of sample 1 and sample 2; pc is the 

combined or pooled possibility of p1 and p2, calculating by  
 

  X1+X2 

     pc  = 

    n1+n2 

 
 

2nd To calculate it, do the following: 
 
 

n1 = 80, X1 = 23, p1 = 0.2875;  n2 = 85, X2 = 13, p2 = 0.1529;   
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  X1+X2  23+13  

     pc  =   =    = 0.2182 

    n1+n2   80+85  
 
 

   p1 - p2     0.2875-0.1529 
      u =      =  

    pc ( 1- pc )  (1/n1 + 1/n2)      0.2182 (1- 0.2182 )  (1/80 + 1/85) 
 

         = 2.0921 

 
 

3rd Find the probability () of the u-value: 
 

From u-table, 2.0921 indicated the probability is: 0.05>p>0.02; with the 

confidence level,  = 0.05;  > p, reject the H0 and accept H1. 
 
 
 

Example 5: Comparing of more than two means 
 

Before a treatment, take 3 samples from population and the observations are 

38, 29 and 36 per litter from the samples; After a treatment, take two 

samples from the same population and the observations are 25 and 18 per 

little, is there a difference? 
 
 

1st Making the null hypothesis and setting the test confidence level: 
 

H0: p1 = p2 

H1: p1 ≠ p2 

 = 0.05 
 
 

2nd To calculate it, do the following: 
 

1 = (38+29+36)/3 = 34.33, n1=3;   

2 = (25+18)/2 = 21.50, n2 =2;   
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    1 - 2    34.33 – 21.50 

             

u =      1            2  =         34.33           21.50  

    n1          n2               3  2 

 

     = 2.723 

 
 

3rd Find the probability () of the u-value: 
 

From u-table, 2.723 indicated the probability is: 0.01>p>0.005; with the 

confidence level,  = 0.05;  > p, reject the H0 and accept H1. 

 

 

Note: whenever the normal distributions or approximation to the normal 

distributions are considered with the same sampling numbers, the simple 

formula for u-test could be applied: 
 
         

u =   1 - 2    =     1 - 2       

      1  +  2               1  +  2  
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Chapter 7 
 
 

Chi-squared Test 
 
 

A chi-squared test, also written as X2 test, is a statistical hypothesis test that 

is valid to perform when the test statistic is chi-squared distributed under the 

null hypothesis, specifically Pearson's chi-squared test and variants thereof. 

Pearson's chi-squared test is used to determine whether there is a statistically 

significant difference between the expected frequencies and the observed 

frequencies in one or more categories of a contingency table. 

 

In the standard applications of this test, the observations are classified into 

mutually exclusive classes. If the null hypothesis that there are no 

differences between the classes in the population is true, the test statistic 

computed from the observations follows a X2 frequency distribution. The 

purpose of the test is to evaluate how likely the observed frequencies would 

be assuming the null hypothesis is true. 

 

Test statistics that follow a X2 distribution occurs when the observations are 

independent and normally distributed, which assumptions are often justified 

under the central limit theorem. There are also X2 tests for testing the null 

hypothesis of independence of a pair of random variables based on 

observations of the pairs. 

 

Chi-squared tests often refers to tests for which the distribution of the test 

statistic approaches the X2 distribution asymptotically, meaning that the 

sampling distribution (if the null hypothesis is true) of the test statistic 

approximates a chi-squared distribution more and more closely as sample 

sizes increase. 
 
 

At the end of 19th century, Pearson noticed the existence of significant 

skewness within some biological observations. In order to model the 

observations regardless of being normal or skewed, Pearson, in a series of 

articles published from 1893 to 1916 devised the Pearson distribution, a 

family of continuous probability distributions, which includes the normal 

distribution and many skewed distributions, and proposed a method of 
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statistical analysis consisting of using the Pearson distribution to model the 

observation and performing a test of goodness of fit to determine how well 

the model really fits to the observations. 
 
 

Applications 
 

In cryptanalysis, the chi-squared test is used to compare the distribution of 

plaintext and (possibly) decrypted ciphertext. The lowest value of the test 

means that the decryption was successful with high probability. This method 

can be generalized for solving modern cryptographic problems. 

 

In bioinformatics, chi-squared test is used to compare the distribution of 

certain properties of genes (e.g., genomic content, mutation rate, interaction 

network clustering, etc.) belonging to different categories (e.g., disease 

genes, essential genes, genes on a certain chromosome etc.). 

 

In general: 

If the calculated χ2 > critical value - reject H0 hypothesis and accept H1. 

If the calculated χ2 < critical value - do not reject H0. 
 
 
 

Example 1: chi-squared test for categorical data 
 

Contingency tables are used to determine whether 2 distinct variables are 

linked. To be able to quantify such linkage, we use the chi-squared (X2) test. 

 

Individual members of the sample/population are assigned to the appropriate 

cell of the contingency table according to their values for the two variables. 

When the table has only two rows or two columns this is equivalent to the 

comparison of proportions. In this case it is called four-fold table. 

 

The use of the chi-squared test is not confined to nominal and ordinal data 

but can also be used for continuous variables that have been categorized. 

The procedure described for four-fold table can be easily applied for any 

contingency table, or a fourfold table. 

 

The variables can be: Qualitative, Discrete quantitative and Continuous 

quantitative, whose values have been grouped (i.e. intervals). 
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When there are two such variables the data are arranged in a contingency 

table: Variable #1 -> rows Variable #2 -> columns 
 

Test a two samples’ mean by rate in a fourfold table: 
 

Treatments 
Positive (+) 

finding  
Negative (-

) finding   Total 
Positive 
Rate (%) 

Negative 
Rate (%) 

        

A Treatment for A group 52 (57.18) 19 (13.82) 71 73.24 26.76 

        

B Treatment for B group 39 (33.82) 3 (8.18) 42 92.86 7.14 

        

Total 91  22  113 80.53 19.46 

 

where, the number of finding, 52, 19, 39 and 3 are from the “raw” data of 

the actual frequency by a fourfold table; the total number are sum of them 

respectively; the rate of: 73.24%=(52/71)x100%, 92.86%=(39/42)x100%, 

80.53%=(91/113)x100%. 

 

While, (57.18)=71x80.53%, (13.82)=71x19.46%; (33.83)=42x80.53%, 

(8.13)=42x19.46%. They are the theoretical frequency. 
 
 

1st Making the null hypothesis and setting the test confidence level: 
 

H0: p1 = p2 

H1: p1 ≠ p2 

 = 0.05 
 
 

2nd The value to be tested by (X2) test is based on the formula as follows: 

     (A - T) ² 
χ2   =    
          T 
where, A is actual frequency; T is theoretical frequency, based on the 

hypnosis of Ho – the rate with no significant difference. 
 

     (A - T) ²      (52-57.18)² (19-13.82) ²   (39-33.82) ²       (3-8.18) ² 

χ2   =   T  =  57.18   + 13.82      +     33.82 +     8.18 

 
= 6.48 
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In order to interpret this chi-squared statistic, we need to know the number 

of degrees of freedom (df) involved For a contingency table this is given in 

general by the formula df = (number of rows - 1) x (number of columns - 1) 

or  

v  = (number of rows –1)(number of columns –1) = (2-1)(2-1) = 1 

 

 

3rd Find the probability () of the χ2-value: 

 

From the χ2 –table and v=1, find that 0.025>p>0.01, with  = 0.05, reject the 

H0 and accept H1. 
 
 
 
 

Alternative method for the calculation 
 

 

For the paired data, the χ2 –table could be also expressed as following type 

and then applied in an alternative formula to calculate it. 
 
 

Treatments 
Positive (+) 

finding  
Negative (-) 

finding   Total 

      

A Treatment for A group 52 (a) 19 (b) 71(a+b) 

      

B Treatment for B group 39 (c) 3 (d) 42(c+d) 

      

Total 91 (a+c) 22 (b+d) 113(n) 

 
 

      (ad - bc)² n  (52x3-19x39) ²x113 

χ2   =           =       = 6.48 

 (a+b)(c+d)(a+c)(b+d)     71x42x91x22 
 

 

We can find that the same χ2-value is calculated from the alternative 

formula. The method omits the calculation of the theological frequencies (or 

rates) in the table and therefore is a simple solution for this special 2x2 table.  
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Correction for Continuity 
 

Chi-square is calculated only if all expected cell frequencies are equal to or 

greater than 5. The Yates value is corrected for continuity; the Pearson value 

is not. Both probability estimates are non-directional. 

 

Yates's correction for continuity 

In statistics, Yates's correction for continuity (or Yates's chi-squared test) is 

used in certain situations when testing for independence in a contingency 

table. It aims at correcting the error introduced by assuming that the discrete 

probabilities of frequencies in the table can be approximated by a continuous 

distribution (chi-squared). In some cases, Yates's correction may adjust too 

far, and so its current use is limited. 

 

Correction for approximation error 

Using the chi-squared distribution to interpret Pearson's chi-squared statistic 

requires one to assume that the discrete probability of observed binomial 

frequencies in the table can be approximated by the continuous chi-squared 

distribution. This assumption is not quite correct, and introduces some error. 

 

To reduce the error in approximation, Frank Yates, an English statistician, 

suggested a correction for continuity that adjusts the formula for Pearson's 

chi-squared test by subtracting 0.5 from the difference between each 

observed value and its expected value in a 2x2 contingency table. This 

reduces the chi-squared value obtained and thus increases its p-value. 

 

The effect of Yates's correction is to prevent overestimation of statistical 

significance for small data. This formula is chiefly used when at least one 

cell of the table has an expected count smaller than 5. Unfortunately, Yates's 

correction may tend to overcorrect. This can result in an overly conservative 

result that fails to reject the null hypothesis when it should (a type II error).  
 
 
(1) 1<T<5, n>40,  
 
 
 (a+b)!(c+d)!(a+c)!(b+d)! 

P =  
  a!b!c!d!n! 
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The following is Yates's corrected version of Pearson's chi-squared statistics: 
 
 
(2) T<1 or n<40,  
 
 

     (|A – T| –0.5) ² 
χ2   =    
               T 
 
 

   (|ad – bc| – n/2)² n 

χ2   =             

 (a+b)(c+d)(a+c)(b+d)     
 
 
 

Contingency table (RxC table) 
 
 

      A² 
χ2   = n (   - 1) 

          n1n2 

 
 

Example 2: Correction for approximation error 
 

Suppose we have a set of data as follows: 
 
 I II III IV Total 

      

A 50 48 18 72 188 

B 105 10 7 23 145 

      

Total 155 58 25 95 333 

 
 

1st Making the null hypothesis and setting the test confidence level: 
 

H0: R1 = R2 

H1: R1 ≠ R2 

 = 0.05 
 
 



 106 

2nd The value to be tested by (X2) test is based on the formula as follows: 

 
         50² 48²     18²        72²         105²    10²        7²         23²  

χ2  = 333(               +            +            +            +               +             +            +             - 1) 
    188x155   188x58   188x25   188x95   145x155   145x58   145x25   145x95 
 

 
     = 70.143 
 
 
v  = (2-1)(4-1) = 3 
 
 

3rd Find the probability () of the χ2-value: 
 

From the χ2 –table and v=1, we find 0.005>p, with  = 0.05, then we reject 

the H0 and accept H1. In this example, we reject the null hypothesis, 

meaning: there is association between R1 and R2 and this conclusion has less 

than 5% probability that there could be huge differences in the observed 

values arising just by chance. 
 
 
 

Exact Probabilities in 2x2 Table 
 

Fisher Exact Probability Test  

 

Logic and Procedure: 

 

Consider a 2x2 contingency table of the sort described above, with the cell 

frequencies represented by a, b, c, d, and the marginal totals represented by 

a+b, c+d, a+c, b+d, and n. 
 

 

 + - Totals 

+ a b a+b 
- c d c+d 

Totals a+c b+d  
 
 

If there were no systematic association between the variables A and B within 

the population from which the cell frequencies are randomly drawn, the 
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probability of any particular possible array of cell frequencies, a, b, c, d, 

given fixed values for the marginal totals a+b, c+d, etc., would be given by 

the hypergeometric rule 

  

which for computational purposes reduces to 
 

  

 

Also, the degree of disproportion within any array of cell frequencies—in 

effect, the degree of ostensible association between variables A and B within 

the sample—can be measured by the absolute difference 

 

    

 
 

Example 3: Fisher Exact Probability Test 
 

Suppose we have a data, 28 samples, from a marched-study as follows: 
 
  +    -   Total 

      

 +  11 (a) 9 (b) 20 

 -  1 (c) 7 (d) 8 

      

Total 12  16  28 

 
 

1st Making the null hypothesis and setting the test confidence level: 
 

H0: Ra = Rd 

H1: Ra ≠ Rd 

 = 0.05 
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2nd The value to be tested by (X2) test is based on the formula as follows: 
 

   (|ad – bc| – n/2)² n    (|11x7-9x1|-28/2)²x28 

χ2   =           =       =  2.66 

 (a+b)(c+d)(a+c)(b+d)          20x88x12x16 
 
v  = 1 
 

3rd Find the probability () of the χ2-value: 
 

From the χ2 –table, χ2 = 2.66 and v=1, we find 0.25>p>0.10, with  = 0.05, 

then we can’t reject the H0 and accept H0. In this example, the null 

hypothesis, meaning: there is no statistic significant association between Ra 

and Rd and this conclusion has more than 95% probability that there would 

be true.  
 
 

Example 4: Further to test “b” and “c” 
 

1st Making the null hypothesis and setting the test confidence level: 
 

H0: Rb = Rc 

H1: Rb ≠ Rc  
 = 0.05 
 

2nd The value to be tested by (X2) test is based on the formula as follows: 
 

     (|b– c| –1)²   (|9– 1| –1) ² 
  χ2   =     =       =  4.90 
         b+c        9+1 
 
 

3rd Find the probability () of the χ2-value: 
 

From the χ2 –table, χ2 = 2.66 and v=1, we find 0.05>p>0.0025, with  = 

0.05, then we reject the H0 and accept H1. In this example, we reject the null 

hypothesis, meaning: there is association between Rb and Rc and this 

conclusion has less than 5% probability that there could be huge differences 

in the observed values arising just by chance. 

 
 

Goodness-of-fit Test 
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The goodness of fit of a statistical model describes how well it fits a set of 

observations. Measures of goodness of fit typically summarize the 

discrepancy between observed values and the values expected under the 

model in question. Such measures can be used in statistical hypothesis 

testing, e.g. to test for normality of residuals, to test whether two samples are 

drawn from identical distributions (see Kolmogorov-Smirnov test), or 

whether outcome frequencies follow a specified distribution (see Pearson's 

chi-squared test). In the analysis of variance, one of the components into 

which the variance is partitioned may be a lack-of-fit sum of squares. 

 

Pearson's chi-squared test 

Pearson's chi-squared test uses a measure of goodness of fit which is the sum 

of differences between observed and expected outcome frequencies (that is, 

counts of observations), each squared and divided by the expectation: 
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Chapter 8 
 
 

Nonparametric Statistic Analysis 
 
 

Parametric Statistics and Nonparametric Statistics 
 

What is the difference between a parametric and a nonparametric test? 

 

Parametric tests assume underlying statistical distributions in the data. 

Therefore, several conditions of validity must be met so that the result of a 

parametric test is reliable. For example, Student’s t-test for two independent 

samples is reliable only if each sample follows a normal distribution and if 

sample variances are homogeneous.   

 

The advantage of using a parametric test instead of a nonparametric 

equivalent is that the former will have more statistical power than the latter. 

In other words, a parametric test is more able to lead to a rejection of H0. 

Most of the time, the p-value associated to a parametric test will be lower 

than the p-value associated to a nonparametric equivalent that is run on the 

same data. Parametric tests often have nonparametric equivalents. You will 

find different parametric tests with their equivalents when they exist in this 

grid. 

 

Nonparametric tests are more robust than parametric tests. In other words, 

they are valid in a broader range of situations (fewer conditions of validity). 

Nonparametric tests do not rely on any distribution. They can thus be 

applied even if parametric conditions of validity are not met.  
 

Nonparametric statistics is the branch of statistics that is not based solely on 

parametrized families of probability distributions. Nonparametric statistics is 

based on either being distribution-free or having a specified distribution but 

with the distribution's parameters unspecified. Nonparametric statistics 

includes both descriptive statistics and statistical inference. Nonparametric 

tests are often used when the assumptions of parametric tests are violated. 

 

Nonparametric methods are widely used for studying populations that take 

on a ranked order (such as movie reviews receiving one to four stars). The 

use of nonparametric methods may be necessary when data have a ranking 
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but no clear numerical interpretation, such as when assessing preferences. In 

terms of levels of measurement, non-parametric methods result in ordinal 

data. 

 

As nonparametric methods make fewer assumptions, their applicability is 

much wider than the corresponding parametric methods. In particular, they 

may be applied in situations where less is known about the application in 

question. Also, due to the reliance on fewer assumptions, non-parametric 

methods are more robust. 

 

Another justification for the use of nonparametric methods is simplicity. In 

certain cases, even when the use of parametric methods is justified, 

nonparametric methods may be easier to use. Due both to this simplicity and 

to their greater robustness, nonparametric methods are seen by some 

statisticians as leaving less room for improper use. 

 

The wider applicability and increased robustness of nonparametric tests 

comes at a cost: in cases where a parametric test would be appropriate, 

nonparametric tests have less power. In other words, a larger sample size can 

be required to draw conclusions with the same degree of confidence. 

 

 

Nonparametric Models 

 

Nonparametric models differ from parametric models in that the model 

structure is not specified a priori but is instead determined from data. The 

term nonparametric is not meant to imply that such models completely lack 

parameters but that the number and nature of the parameters are flexible and 

not fixed in advance. 

 

For instance, a histogram is a simple nonparametric estimate of a probability 

distribution; Data envelopment analysis provides efficiency coefficients 

similar to those obtained by multivariate analysis without any distributional 

assumption. 
 

Methods 
 

Nonparametric (or distribution-free) inferential statistical methods are 

mathematical procedures for statistical hypothesis testing which, unlike 

parametric statistics, make no assumptions about the probability 



 112 

distributions of the variables being assessed. Order statistics, which are 

based on the ranks of observations, is one example of such statistics. 

 
 

Signed Rank Test 
 

The Wilcoxon signed-rank test is a nonparametric statistical hypothesis test 

used to compare two related samples, matched samples, or repeated 

measurements on a single sample to assess whether their population mean 

ranks differ (i.e. it is a paired difference test). It can be used as an alternative 

to the paired Student's t-test (also known as "t-test for matched pairs" or "t-

test for dependent samples") when the distribution of the difference between 

two samples' means cannot be assumed to be normally distributed. A 

Wilcoxon signed-rank test is a nonparametric test that can be used to 

determine whether two dependent samples were selected from populations 

having the same distribution. 
 
 

Assumptions 
 

Data are paired and come from the same population. Each pair is chosen 

randomly and independently. The data are measured on at least an interval 

scale when, as is usual, within-pair differences are calculated to perform the 

test (though it does suffice that within-pair comparisons are on an ordinal 

scale) 
 
 

Example 1: Compare the means of paired data 
 

Suppose a set of 12 samples, before treatment and after treatment, as 

follows, Question: is there difference by treatment?  
 

     Rank  

n Before After  Difference (D) + - 

(1) (2) (3)  (4)  (5) (6) 

1 76 93  -27   10 

2 71 68  3  1  

3 70 65  5  4  

4 61 65  -4   3 

5 80 93  -13   9 

6 59 78  -19   12 

7 74 83  -9   8 

8 62 79  -17   11 

9 79 98  -9   7 
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10 72 78  -6   5 

11 84 90  -6   6 

12 63 60  3  2  

        

  n=12    Total  7 71 

 
 

1st Making the null hypothesis and setting the test confidence level: 
 
H0: M = 0 (M: median. There is no difference by treatment)  
H1: M ≠ 0 (There is a difference by the treatment) 

 = 0.05 
 
 

2nd Calculate the difference and list on the table on column (5) and (6) 
 

If the absolution number is same, but the positive and negative difference, 

then use average of them for rank. 

If they are same value, for example of sampling 10 and 11, both of “-6” 

could be ranked as order in 5 and 6 on column (5) and (6) respectively.  

 

Use the smaller one of ranking number as the “T”, the total of 7 in column 

(5) in this example. 

 

 

3rd Find the p-value 

 

From T-table with n=12 and T=7, we find p=0.01,  = 0.05, and reject the 

H0 and accept H1. 
 
 
 

The close to u-test 
 

When n>50, use following formula: 
 
 
      | T-n(n+1)/4 | - 0.5    

u =                

  n(n+1)(2n-1)/24  
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where, “T” value is close to mean of “n(n+1)/4”; Square Variance is close to 

“n(n+1)(2n-1)/24; “0.5” is adjustment of correction for continuous. Then, 

the formula is close to a normal distribution. 

 

 

When there are many of the same value on ranking in test, for example the 

total of same rank over 50, then use following formula for correction. 
 
 
         | T-n(n+1)/4 | - 0.5    

u =                

  n(n+1)(2n-1)/24 - (tj³-tj)/48 

                   

where, tj is number of the same difference. For example, if there are 2 of 3, 2 

of 6, 2 of 17, the tj would be:  t1=2, t2=2, t3=2. 

 
 

Example 2: The multiple marched cases 
 

The multiple marched cases as follows: 
 

 A Rank B Rank C Rank  

Feb. 11.4 (3) 5.8 (2) 3.5 (1)  

Apr. 6.4 (1) 8.6 (3) 7.5 (2)  

Jun. 11.2 (3) 7.0 (1) 9.8 (2)  

Aug. 13.8 (3) 10.8 (2) 10.4 (1)  

Oct. 7.3 (1) 8.8 (2) 9.3 (3)  

Dec. 8.3 (3) 6.2 (2) 2.5 (1)  

        

Total (Ri)  14  12  10  

        

Average (R)  12  12  12  

       Sum(M) 

(Ri-R) 2  4  0  4 8 

Note:  

A, B and C are ranked within the same month (the same row in table). 

The average (R) is calculated: (14+12+10)/3=12. 
 
 

1st Making the null hypothesis and setting the test confidence level: 

 

H0: MA = MB = MC = 0  

H1: MA ≠  MB ≠ MC ≠ 0  

 = 0.05 
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2nd To calculate it, do the following: 
 
Calculate the average R: (14+12+10)/3=12 
 
Calculate the Square Variance (Ri-R) 2: (14-12) 2=4; (12-12) 2=0; (10-12) 2=4; 
 
M-value: 4+0+4=8 
 
 

3rd Determine the p-value: 
  

From M-table with n=6 and k=3, we find M0.05=42; As M-value =8 and less 

than 42, p>0.05; with  = 0.05, we can’t reject the H0 and accept H0. Thus, 

we can’t believe that there are differences among the A, B and C. 
 
 
 

Example 3: Test of rank data 
 

Suppose we have two sample cases as follows: 

 
 

A Rank  B Rank 

     

5 (1)  17 (9) 

5 (2)  18 (10.5) 

6 (3)  20 (12) 

7 (4)  25 (14) 

9 (5)  34 (15) 

12 (6)  43 (16) 

13 (7)  44 (17) 

15 (8)    

18 (10.5)    

21 (13)    

     

nA=10 TA=59.5 nB=7 TB=93.5 

 
 

1st Making the null hypothesis and setting the test confidence level: 
 

H0: MA = MB   

H1: MA ≠  MB  

 = 0.05 
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2nd Rank the samples and calculate the T-value in the following table: 
 
 

Test    Two Samples  Rank Rank   Rank Totals 

Index A B Total Range Average A B 

(1) (2) (3) (4) (5) (6) (7) (8) 

        

<1 4  4 1 -- 4 2.5 10  

1 -- 11  11 5 --15 10 110  

5 -- 15 2 17 16 --32 24 360 48 

10 --  10 10 33 --42 37.5  375 

15 --  1 1 43 43  43 

20 --  4 4 44 -- 47 45.5  182 

25 --  2 2 48 -- 49 48.5  97 

        

Total nA=30 nB=19 49   TA=480 TB=745 

 
 

Calculate rank total in Column (4); 

 

Calculate rank range and accumulate the rank number in column (5). 

For example: 1st row(<1) has a total of 4; 2nd row has a total of 11 and plus 

the 1st row of 4 to accumulate in total of 15, therefore the rank range would 

be from 5 to 15.  
 

Calculate rank average.  

For example: (1+4)/2=2.5; (5+15)/2=10; (16+32)/2=24; (33+42)/2=37.5; 

(43+43)/2=43; (44+47)/2=45.5; (48+49)/2=48.5. 

 

Rank of total on column (7) = column (2) multiply the column (6).  

For Example: 4x2.5=10 in 1st row. 

 

Rank of total on column (8) = column (3) multiply the column (6).  

For Example: 2x24=48 in 3rd row. 

 
 

3rd Determine the p-value: 
  

From T-table, nA < nB, T=93.5, p<0.005,  = 0.05, reject the H0 and accept 

H1. 
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Approximation to the Normal Distribution  
 
 

Example 4: Approximation to the normal distribution method 

 

Alternatively, when n1>20 and n2-n1>10, we can use the following formula 

to calculate the u-test value; when there are many of the same number in the 

same range of rank, we should use the adjusted u-test in this example: 
 
 

         | T1 -n1 (N+1)/2 | - 0.5    

u =                

      n1 n2    [N³-N-(tj³-tj)] 

                      12N(N-1)                

   
 
         |745-19(49+1)/2 | - 0.5    

    =                    = 5.711 

     19(30)      [(49)³- 49-7332)] 

          12(49)(49-1)                   

 

where, (tj³-tj) = (4³-4)+(11³-11)+(17³-17)+(10³-10)+(4³-4)+(2³-2)=7332 
 

From u-table, n=49, u=5.711, we find p<0.001, with  = 0.05, we reject the 

H0 and accept H1.  (The same result as previous test) 
 
 
 

Multiply Samples (H-test) 
 
H-test: 
 
    12   Ri

2 

H =                    - 3(N+1) ] 

 N(N+1)   ni 

 
 

Correction for approximation error 

 

When there are many of the same ranks, use the adjusted formula: 
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    12   Ri
2         (tj³-tj) 

H =           - 3(N+1)   [1 -          ] 

 N(N+1)   ni           N-N 

 
 
 

Example 5: Test for multiply samples 
 
 

Suppose we have a set of data, Four Groups of A, B, C, and D, as follows:  
 
 A Rank B Rank C Rank D Rank  

          

 0.15 1 1.20 7.5 0.50 5.5 1.50 13  

 0.30 2 1.35 9 1.20 7.5 1.50 13  

 0.40 3 1.40 10.5 1.40 10.5 2.50 20  

 0.40 4 1.50 13 2.00 16 2.50 21  

 0.50 5.5 1.90 15 2.20 17    

   2.30 19 2.20 18    

          

Ri  15.5  74  74.5  67  

ni  5  6  6  4 N=21 

 
 
 

1st Making the null hypothesis and setting the test confidence level: 

 

H0: MA = MB  = MC  = MD   

H1: MA ≠  MB  ≠ MC  ≠ MD   

 = 0.05 
 
 

2nd Calculate rank of each group, do the following:  
 

Two 0.40 in the same group of A, then, make their rank as ordinary way as 3 

and4. However, two 0.50 in group A and group C, then, use (5+6)/2=5.5 (the 

average rank should be balanced as the same value in different groups) 
 
 

Calculate Ri and ni as showed in the table. 

 
Total sample: N=5+6+6+4=21 
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Calculate H value. 
 

    12   Ri
2 

H =                    - 3(N+1) ] 

 N(N+1)   ni 

 
     12           15.52        742      74.52      672   
   =                      [         +           +           +           ]   -  3(21+1)  =  12.13 
 21(21+1)        5           6          6            4 
 
 

Correction for approximation error 

(If use the formula of correction for approximation error, the H value is 

12.21, close to 12.13 above) 

 

3rd Find the p-value 

 

From the χ2-table, k=4 and v=4-1=3, we find 0.01>P>0.005, with  = 0.05, 

we reject the H0 and accept H1. 
 
 

Example 6: Test for multiply rank data 
 

Five Groups of A, B, C, D and E:  
 

       Rank Rank 

 A B C D E Total Range Average 
         

I 21 19    40 1 - 40 20.5 

II 4 4 41 3  52 41-92 66.5 

III  0 6 11 31 48 93-140 116.5 

IV  2 3 15 42 62 141-202 171.5 

V    21 77 98 203-300 251.5 

         

ni 25 25 50 50 150 300   

         

Ri 696.5 998.5 3940 9335 30180    

 
 

1st Making the null hypothesis and setting the test confidence level: 
 

H0: MA = MB  = MC  = MD  = ME   

H1: MA ≠  MB  ≠ MC  ≠ MD  ≠ ME   

 = 0.05 
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2nd Calculate rank range and rank average.  
 
Calculate Ri and ni. (See the table for details) 
 
N=25+25+50+50+150=300 
 
Ri= Number in a group multiply the Rang Average respectively.  
For example, Group A: 21x20.5+4x66.5=696.5. 
 

Calculate H value: 

 

As there are many of the same rank in the case, use the adjusted formula: 
 

 (tj³-tj) = (40³-40)+(52³-52)+(48³-48)+(62³-62)+(98³-98) = 1494420 

 
 

    12   Ri
2         (tj³-tj) 

H =           - 3(N+1)   [1 -          ] 

 N(N+1)   ni           N-N 

 
 

    12              696.52   998.52   3940     93352    301802       
     [                    x (          +           +           +            +             )  -  3(300+1) ]    
 =     300(300+1)        25         25        50          50         150             

    1494420 / (300³-300) 

     
 =  195.50 
    
 

3rd Find the p value 

 

From the χ2-table, K=5, k=4, v=5-1=4, we find P<0.005; with  = 0.05, we 

reject the H0 and accept H1. 
 
 
 

Multiply Samples with Comparing Each of Two 
 
    RA - RB 
                          
 t =         N(N+1)(N-1-H)        1                 1 

              12(N-k)          (   nA               nB   ) 
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 v=N-k 
 
 

Example 7: Compare each of two groups from the multiply samples 
 

Based on case of Four Groups of A, B, C, and D before, the H value was 

195.50. 
 
 
 A Rank B Rank C Rank D Rank  

          

 0.15 1 1.20 7.5 0.50 5.5 1.50 13  

 0.30 2 1.35 9 1.20 7.5 1.50 13  

 0.40 3 1.40 10.5 1.40 10.5 2.50 20  

 0.40 4 1.50 13 2.00 16 2.50 21  

 0.50 5.5 1.90 15 2.20 17    

   2.30 19 2.20 18    

          

Ri  15.5  74  74.5  67  

ni  5  6  6  4 N=21 

 
 

Now take two groups from the 4 groups for testing. 
 
Mean: RiA=15.5/5=3.10; RiB=74/6=12.33; RiC=74.5/6=12.42; RiD=67/4=16.75. 
Difference: for example, RiA – RiB  = 3.10 – 12.33 = -9.23 
 
 
    RA - RB 
                          
 t =         N(N+1)(N-1-H)        1                 1 

              12(N-k)          (   nA               nB   ) 

 
 
    3.10 – 12.33 
                          
  =         21(21+1)(21-1-12.21)         1                1                  =  -3.629 

              12(21-4)                   (    5               6    ) 

 
 

The values could be sorted out as follows: 

 

A v. B nA nB  t p  Ho 

        

1 v. 2 5 6 -9.23 -3.629 0.005>p>0.002 x 

1 v. 3 5 6 -9.32 -3.664 0.002>p>0.001 x 
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1 v. 4 5 4 -13.65 -4.845 0.001>p x 

2 v. 3 6 6 -0.09 -0.038 p>0.50   

2 v. 4 6 4 -4.42 -1.630 0.20>p>0.10  

3 v. 4 6 4 -4.33 -1.597 0.20>p>0.10  

 
 

From the calculation listed on the table above, we can determine the p and 

check the statistic significances on the Ho:  

“1 vs. 2”, “1 vs. 3” and “1 vs.4” indicated rejecting the Ho;  

“2 vs. 3”, “2 vs. 4” and “3 vs.4” indicated not rejecting the Ho. 
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Chapter 9 
 
 

Simple Regression Analysis 
 

What Is Regression? 
 

Regression is a statistical method used in finance, investing, and other 

disciplines that attempts to determine the strength and character of the 

relationship between one dependent variable (usually denoted by Y) and a 

series of other variables (known as independent variables). 

 

 

The are two categories of regression analysis in inferential statistics and they 

can summarize up as follows:  
 
 

Linear regression (Simple regression); linear equation: F-test 
     Linear correlation (Simple correlation): t-test 
      Positive / Negative correlation 
Inferential      Correlation coefficient 
Statistics    

Multiple linear regression: F-test 
    Coefficient of multiple correlation: t-test 
     Coefficient of partial correlation: t-test 
 

 

 

Why is it called "linear" regression? 

 

Linear implies the model functions along a straight or nearly straight line. 

Linear suggests that the relationship between dependent and independent 

variable can be expressed in a straight line. A Simple Linear Regression uses 

a single feature (independent variable) to predict a target (dependent 

variable) by fitting a best linear relationship, whereas Multiple Linear 

Regression uses more than one feature to predict a target variable by fitting a 

best linear relationship. In this chapter, we shall mainly focus Simple Linear 

Regression. 
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Simple Linear Regression 
 

In statistics, simple linear regression is a linear regression model with a 

single explanatory variable. That is, it concerns two-dimensional sample 

points with one independent variable and one dependent variable 

(conventionally, the x and y coordinates in a Cartesian coordinate system) 

and finds a linear function (a non-vertical straight line) that, as accurately as 

possible, predicts the dependent variable values as a function of the 

independent variable. The adjective simple refers to the fact that the 

outcome variable is related to a single predictor. 

 

It is common to make the additional stipulation that the ordinary least 

squares (OLS) method should be used: the accuracy of each predicted value 

is measured by its squared residual (vertical distance between the point of 

the data set and the fitted line), and the goal is to make the sum of these 

squared deviations as small as possible. Other regression methods that can 

be used in place of ordinary least squares include least absolute deviations 

(minimizing the sum of absolute values of residuals) and the Theil-Sen 

estimator (which chooses a line whose slope is the median of the slopes 

determined by pairs of sample points). Deming regression (total least 

squares) also finds a line that fits a set of two-dimensional sample points, but 

(unlike ordinary least squares, least absolute deviations, and median slope 

regression) it is not really an instance of simple linear regression, because it 

does not separate the coordinates into one dependent and one independent 

variable and could potentially return a vertical line as its fit. 

 

The remainder of the article assumes an ordinary least squares regression. In 

this case, the slope of the fitted line is equal to the correlation between y and 

x corrected by the ratio of standard deviations of these variables. The 

intercept of the fitted line is such that the line passes through the center of 

mass (x, y) of the data points. 
 
 

Fitting the regression line and the model function 
 
Y=a+bX  
 

which describes a line with slope “b” and y-intercept “a”. In general such a 

relationship may not hold exactly for the largely unobserved population of 

values of the independent and dependent variables; we call the unobserved 

deviations from the above equation the errors.  
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Suppose we observe n data pairs and call them {(Xi, Yi), i = 1, ... n}. We 

can describe the underlying relationship between Yi and Xi involving this 

error term Ei by 
 
Yi=a+bXi+Ei 
 

This relationship between the true (but unobserved) underlying parameters 

“a” and “b” and the data points is called a linear regression model. 

 

In mathematical modeling, the dependent variable is studied to see if and 

how much it varies as the independent variables vary. In the simple 

stochastic linear model Yi=a+bXi+Ei the term Yi is the i-th value of the 

dependent variable and Xi is the i-th value of the independent variable. The 

term Ei is known as the "error" and contains the variability of the dependent 

variable not explained by the independent variable, and Ei=Yi-a-bXi. 

 

The goal is to find estimated values “average a” and “average b” for the 

parameters “a” and “b” which would provide the "best" fit in some sense for 

the data points. As mentioned in the introduction, in this article the "best" fit 

will be understood as in the least-squares approach: a line that minimizes the 

sum of squared residuals “Ei” (differences between actual and predicted 

values of the dependent variable y), each of which is given by, for any 

candidate parameter values “a” and “b” (Ei=Yi-a-bXi) 

 
 

The illustration of Linear equation and Linear regression model: 
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In mathematical least square method, "a" and "b" solve the following 

minimization problem: 
 

 (X - Xm)(Y - Ym)  Lxy 
 b =          =    
     (X - Xm)2     Lxx 
 
 
 a = Ym - bXm 
  

Lxy = (X - Xm)(Y - Ym) = XY – (X)(Y) /n  

 Lxx = (X - Xm)2 = X – (X)2/n  

 Lyy = (Y - Ym)2 = Y – (Y)2/n  
 
 
 

The figure of Linear equation and Linear regression model: 
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The relationship of lighter green point (Y) with the linear equation 

(y^=a+bX) is supposed to be tested for the correlation.  
 
Y=Ym+(Y^ -Ym)+(Y-Y^)   (Y-Ym) = (Y^ -Ym)+(Y-Y^)   
 

If all the Y point value to be summed up, the total sum of square would be 
 

 (Y – Ym) 2 =  (Y^ -Ym) 2 +  (Y-Y^) 2 
 
 
      SS total   = SS regression + SS residual 

It indicated the relationship of sum of square: 
 
SS total = SS regression + SS residual 
 
Where,  
SS total: Total sum of square, indicating the Y-variance. 
SS regression: Regression sum of square, indicating how X-variance to be 
correlation to the Y-variance. 
SS residual: Residual sum of square, indicating how other factors, not including X-
variance, to be correlation to the Y-variance. 
 
 
Degree of freedom:  
V total = V regression + V residual 
V total = n-1; V regression = 1; V residual = n-2; 
 
 
 

Example 1: how to set up a simple linear equation 

 

Suppose we have a set of data as follows: 
 

X 1 2 3 4 5 

Y 4.0 5.5 6.2 7.7 8.5 

 

 

Calculating Slope and Intercepts 

 

We all know from elementary geometry that equation of a straight line can 

be written as:  Y= a + bX 
 
 

1st Sort the table as follows: 
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 X X2 Y Y2 XY 
 (1) (2) (3) (4) (5) 
      

 1 1 4.0 16.00 4.0 
 2 4 5.5 30.25 11.0 
 3 9 6.2 38.44 18.6 
 4 16 7.7 59.29 30.8 
 5 25 8.5 72.25 42.5 

Total 15 55 31.9 216.23 106.9 

n 5  5   
Mean 3  6.38   

 
 

2nd Do the following calculation: 
 

Lxy = (X - Xm)(Y - Ym) = XY – (X)(Y) /n = 106.9-(15)(31.9)/5 = 11.20 

Lxx = (X - Xm)2 = X – (X)2/n = 55-152/5 = 10 
 
 

3rd Set up the Linear equation: 
 

 (X - Xm)(Y - Ym)  Lxy  11.20 
 b =          =     =     =  1.12 

     (X - Xm)2     Lxx      10 
 
 a = Ym – bXm = 6.38 – 1.12x3 = 3.02 
 

The Linear equation: Y= a + bX = 3.02 + 1.12X 

 
 

Further Statistic Consideration 
 

When a simple linear equation is set up by the available sampling data and 

the linear equation is supposed to be existed, we basically have to answer 

two statistic questions: 

 

1. is the linear regression equation right in statistics?  - The answer for this 

question is to test the regression coefficient. 

2. how can the differences in one variable be explained by the difference in a 

second variable (Linear correlation)?  - The answer for this question is to test 

the correlation coefficient. 
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Test of a Regression Coefficient 
 

Whether the linear equation is correlated or not, a statistic test should be 

conducted for finding the linear relationship between the variables (X) and 

(Y). In other words, the statistic testing the regression coefficient of the 

linear equation is needed for checking the variables (X) and (Y). 

 

A correlation coefficient is a numerical measure of some type of correlation, 

meaning a statistical relationship between two variables. The variables may 

be two columns of a given data set of observations, often called a sample, or 

two components of a multivariate random variable with a known 

distribution. 

 

The t-test is applicable to a variety of problems. In particular, it is applicable 

to the problem of testing the statistical significance of a regression 

coefficient. Under a set of assumptions that are usually referred to as the 

Gauss-Markov conditions, the t test can be used to test the significance of a 

regression coefficient. 

 

In statistics, the Gauss-Markov theorem states that the ordinary least squares 

(OLS) estimator has the lowest sampling variance within the class of linear 

unbiased estimators, if the errors in the linear regression model are 

uncorrelated, have equal variances and expectation value of zero. The errors 

do not need to be normal, nor do they need to be independent and identically 

distributed (only uncorrelated with mean zero and homoscedastic with finite 

variance). The requirement that the estimator be unbiased cannot be 

dropped, since biased estimators exist with lower variance.  
 
 
 

Regression Coefficient Test 
 

How to determine a regression coefficient 

 

Base on the linear equation set up in 3rd step above, we do the following 

regression coefficient test: 

 

Use the linear equation to calculate the value in Column (6), (7) and (8) to 

fill out the following table. 
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 X X2 Y Y2 XY Ytotal Y-Ytotal (Y-Ytotal) 2 (Y-Ymean) 2 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

          

 1 1 4.0 16.00 4.0 4.14 -0.14 0.0196 5.6644 

 2 4 5.5 30.25 11.0 5.26 0.24 0.0576 0.7744 

 3 9 6.2 38.44 18.6 6.38 -0.18 0.0324 0.0324 

 4 16 7.7 59.29 30.8 7.50 0.20 0.0400 1.7424 

 5 25 8.5 72.25 42.5 8.62 -0.12 0.0144 4.4944 

Sum 15 55 31.9 216.23 106.9  0 0.1640 12.708 

n 5  5       

Mean 3  6.38       

 

For example,  
 
Column (6): Y1-total = a + bX1 = 3.02 + 1.12x1= 4.14 
 
Column (7): Y1 - Y1-total = 4 – 4.14 = -0.14 
 
Column (8): (Y1 - Y1-total) 2 = (4 – 4.14) 2 = 0.0196 
 
Column (9): (Y1- Ymean) 2 = (4 – 6.38) 2 = 5.6644 
 
 

Sum up the calculation:  
 

The Linear equation: Y= a + bX = 3.02 + 1.12X 

 

 (Y – Ym) 2 =  (Y^ -Ym) 2 +  (Y-Y^) 2 
 
 
      SS total   = SS regression + SS residual 
 
 

SS total:  Lyy = (Y - Ym)2 = Y2 – (Y)2/n = 216.23-31.92/5 = 12.708 

(Or, SS total:  Lyy = Y – (Y)2/n = 216.23-31.92/5 = 12.708 ) 
 
 

Lxy = (X - Xm)(Y - Ym) = XY – (X)(Y) /n = 106.9-(15)(31.9)/5 = 11.20 

Lxx = (X - Xm)2 = X2 – (X)2/n = 55-152/5 = 10 
 

SS residual = (Y – Y^)2  = 0.1640 
(Or, SS residual:  L2

xy / Lxx = 11.22//10 = 0.1640  

Lxy = (X - Xm)(Y - Ym) = XY – (X)(Y) /n = 106.9-(15)(31.9)/5 = 11.20 

Lxx = (X - Xm)2 = X2 – (X)2/n = 55-152/5 = 10) 
 
SS regression = SS total - SS residual = 12.708 - 0.1640 =12.544 
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V total = V regression + V residual  => V total = n-1; V regression = 1; V residual = n-2; 
 
 
 
 

Example 2: Methods of F-test to test a regression coefficient 
 

 

1st Making the null hypothesis and setting the test confidence level: 
 

H0:  = 0, (No linear regression)  

H1:  ≠ 0,  

 = 0.05 
 
 

2nd Calculate the F value according to the following formula: 
 
 MS regression       SS regression / V regression              12.544 / 1      
F =    =       =   = 229.32 
 MS residual          SS residual / V residual           0.164 / (5-2) 
 

3rd Find the p value 

 

From the F-table, with V regression = 1 and V residual = 3, we find p<0.01; with 

 = 0.05 and  >p, we have statistic significant confidence, with 95%, 

accepting the effects of X-variable correlated with Y-variable in the linear 

regression mode.    
 
 
 

Example 3: Methods of t-test to test a regression coefficient 
 

1st Making the null hypothesis and setting the test confidence level: 
 

H0:  = 0, (No linear regression)  

H1:  ≠ 0,  

 = 0.05 
 
 

2nd Calculate the t value according to the following formula: 
 
      b-0       b 
t =       =  
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      Sb   Syx   /   Lxx  

 

Where, Sb, standard error of regression coefficient b; Syx, standard deviation of 

Y for fixed X. 
 

The Linear equation: Y= a + bX = 3.02 + 1.12X; a=3.02; b=1.12. 

 
 
 

Syx  =         (Y – Y^)2   =  SS residual       =        0.164     =  0.2338 

          n-2                          n-2                    5-2 

 
       b   1.12 
   t =              =    = 15.149 

     Syx   /    Lxx    0.2338      10     

 
 
 

3rd Find the p value 
 

From the t-table, with V regression = 1 and V residual = 3, we find p<0.01; with 

 = 0.05 and  >p, we reject the H0 and have statistic significant confidence, 

with 95%, accepting the effects of X-variable correlated with Y-variable in 

the linear regression mode.    
 
 

Applications of Simple Linear Regression 
 

1. Description the regression of the two variance, measurable amount. 

2. Forecast: X as forecast facto and linear equation as formula to make 

the forecast of reliable interval. Syx could be used as the index for 

regression. 

3. Statistical control: based on the regression equation and knowing the 

variance of Y, then, it could conduct the control on variance of X 

under some point of limitation (by t-table value). 
 
 

For instance: 

 

Linear Regression is a very powerful statistical technique and can be used to 

generate insights on consumer behaviour, understanding business and factors 

influencing profitability. Linear regressions can be used in business to 
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evaluate trends and make estimates or forecasts. For example, if a 

company’s sales have increased steadily every month for the past few years, 

by conducting a linear analysis on the sales data with monthly sales, the 

company could forecast sales in future months. 

 

 

Linear regression can also be used to analyze the marketing effectiveness, 

pricing and promotions on sales of a product. For instance, if company XYZ, 

wants to know if the funds that they have invested in marketing a particular 

brand has given them substantial return on investment, they can use linear 

regression. The beauty of linear regression is that it enables us to capture the 

isolated impacts of each of the marketing campaigns along with controlling 

the factors that could influence the sales. In real life scenarios there are 

multiple advertising campaigns that run during the same time period. 

Supposing two campaigns are run on TV and Radio in parallel, a linear 

regression can capture the isolated as well as the combined impact of 

running this ads together. 
 
 

Linear regression can be also used to assess risk in financial services or 

insurance domain. For example, a car insurance company might conduct a 

linear regression to come up with a suggested premium table using predicted 

claims to Insured Declared Value ratio. The risk can be assessed based on 

the attributes of the car, driver information or demographics. The results of 

such an analysis might guide important business decisions. 

 

In the credit card industry, a financial company maybe interested in 

minimizing the risk portfolio and wants to understand the top five factors 

that cause a customer to default. Based on the results the company could 

implement specific EMI options so as to minimize default among risky 

customers. 

 

 

While linear regression has limited applicability in business situations 

because it can work only when the dependent variable is of continuous 

nature, it still is a very well known technique in the situations it can be used. 

It assumes a linear relation between the independent and dependent 

variables. It must be noted that sometimes transformations can also be 

applied to non-linear relationships to make them applicable in a linear 

regression model. 
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Linear Correlation 
 

Simple correlation can be used for bivariate normal distribution and 

indicated: 

 

Zero correlation 

Positive correlation  

Negative correlation 

Perfect negative correlation 

Perfect positive correlation 
 
 

The following figures have showed how the typical correlations are 

expressed by “r” value between -1.0 to 1.0: 

 
 
 

Understanding the Correlation Coefficient 
 
 

The correlation coefficient of determination is a statistical measurement that 

examines how differences in one variable can be explained by the difference 
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in a second variable, when predicting the outcome of a given event. In other 

words, this coefficient, which is more commonly known as R-squared (or 

R2), assesses how strong the linear relationship is between two variables, and 

is heavily relied on by researchers when conducting trend analysis. To cite 

an example of its application, this coefficient may contemplate the following 

question: if a woman becomes pregnant on a certain day, what is the 

likelihood that she would deliver her baby on a particular data in the future? 

In this scenario, this metric aims to calculate the correlation between two 

related events: conception and birth. 

 

The correlation coefficient of determination is a measurement used to 

explain how much variability of one factor can be caused by its relationship 

to another related factor. This correlation, known as the "goodness of fit," is 

represented as a value between 0.0 and 1.0. A value of 1.0 indicates a perfect 

fit, and is thus a highly reliable model for future forecasts, while a value of 

0.0 would indicate that the calculation fails to accurately model the data at 

all. But a value of 0.20, for example, suggests that 20% of the dependent 

variable is predicted by the independent variable, while a value of 0.50 

suggests that 50% of the dependent variable is predicted by the independent 

variable, and so forth. 
 

Graphing the Correlation Coefficient 
 

On a graph, the goodness of fit measures the distance between a fitted line 

and all of the data points that are scattered throughout the diagram. The tight 

set of data will have a regression line that's close to the points and have a 

high level of fit, meaning that the distance between the line and the data is 

small. Although a good fit has an R2 close to 1.0, this number alone cannot 

determine whether the data points or predictions are biased. It also doesn't 

tell analysts whether the coefficient of determination value is intrinsically 

good or bad. It is at the discretion of the user to evaluate the meaning of this 

correlation, and how it may be applied in the context of future trend 

analyses. 
 
 

Types of  "goodness of fit" 
 

There are several different measures for the degree of correlation in data, 

depending on the kind of data: principally whether the data is a 

measurement, ordinal, or categorical. 
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Several types of correlation coefficient exist, each with their own definition 

and own range of usability and characteristics. They all assume values in the 

range from -1 to +1, where ±1 indicates the strongest possible agreement and 

0 the strongest possible disagreement.  

 
 

Pearson product-moment correlation coefficient 
 

The Pearson product-moment correlation coefficient, also known as r, R, or 

Pearson's r, is a measure of the strength and direction of the linear 

relationship between two variables that is defined as the covariance of the 

variables divided by the product of their standard deviations. This is the 

best-known and most commonly used type of correlation coefficient. When 

the term "correlation coefficient" is used without further qualification, it 

usually refers to the Pearson product-moment correlation coefficient. 
 
 

        (X – Xm)  (Y – Ym)         Lxy 

   r  =          = 

      (X – Xm)2  (Y – Ym)2        Lxx Lyy 
 

r could be the value between –1 and +1 to indicate the correlation. r-table to 

find the p value. 
 
 

Example 4: Calculation of correlation coefficient of determination 
 

Suppose we have the data as follows: 
 

N X X2  Y Y2  X*Y 

        

1 77 5929  87 7569  6699 

2 78 6084  90 8100  7020 

3 79 6241  89 7921  7031 

4 80 6400  90 8100  7200 

5 81 6561  91 8281  7371 

6 82 6724  89 7921  7298 

7 83 6889  91 8281  7553 

8 84 7056  92 8464  7728 

9 76 5776  86 7396  6536 

10 79 6241  88 7744  6952 

Sum ( ) 799 63901  893 79777  71388 
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1st Summary of calculation:  
 

X = 799;   X2 = 63901;   Y = 893;   Y2 = 79777;   XY = 71388. 
 

Lxx = X2 – (X)2/n = 63901 - 7992/10 = 60.9 

Lyy = Y2 – (Y)2/n = 79777 - (893)2/10 = 32.1 

Lxy = XY – (X)(Y) /n = 71388-(799)(893)/10 = 37.3 
 
V total = V regression + V residual  => V total = n-1; V regression = 1; V residual = n-2; 
 
 

2nd Calculate the r-value, do the following: 
 
          Lxy          37.3  

   r  =      =      =  0.844 

      Lxx Lyy     60.9 x 32.1 
 
 

3rd Make the test for the correlation coefficient 
 
 

Hypothesis of correlation coefficient 
 

The r-value calculated is from the samples and is used for the estimation of 

the population. As there are the possibilities of sampling error, we should 

conduct a statistic test for the r and make the statistic significance judgments 

between the variable X and Y. 
 

a. The hypothesis:  
 

H0:  = 0  (No linear correlation between the X and Y)  

H1:  > 0   

 = 0.05 
 
 

b. The t-test and its formula are following: 
 
 r – 0   r          0.844 
 t =       =     =       = 4.451 

  Sr    (1 – r2) / (n-2)         (1-0.8442) / (10-2) 

 
Where, Sr is standard error of r; n is number of samples. 
Note: the population error is supposed R0=0.  
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c. Find the p-value 
 

From the t-table, with V = 2, we find 0.0025>p>0.001; with  = 0.05 and  

>p, we reject the H0 and have statistic significant confidence, with 95%, 

accepting the X-variable positive correlation with Y-variable in the linear 

regression mode.    

(Note: as it is either positive or negative correlation, the single side of p-

value applied) 
 
 
 

Difference Between the Linear Equation and Linear Correlation 
 

I type regression: Y variance is normal distribution and X variance has exact 

value. 

 

II type regression: both of Y and X variance are normal distribution. It could 

be set up two regression equations: 
 

Y= ayx + byx X 

 

X = axy + bxy Y 

 

Regression equation indicates the two of variance is co-existing. It is 

quantity measurable. 

 

Regression correlation indicates the two of variance with possible 

relationship of correlation. It is correlation between the two set of variance 

in data. 
 
 
 

Similarity Between the Linear Equation and Linear Correlation 
 

r and b always have same positive or negative value. 

r and b have the hypothesis test on same level. 

r and b could be transferred each other. 

 

I Type Regression: 

( r => b ) 



 139 

 

        (X – Xm)  (Y – Ym)         Lxy          Lxx 

   r  =          =     =    b  

              (X – Xm)2  (Y – Ym)2         Lxx Lyy        Lyy 

 
 
 

II Type Regression: 

( b  r ) 
         

  byx = r ( Sy / Sx ) ;   bxy = r ( Sx / Sy ) ;  r =    byx  bxy ) 

 
where, Sy is the standard error of Y variance; Sx is the standard error of X 
variance; 
 
 
 

Coefficient of Determination 

 
r2 is the Coefficient of Determination. 

 

r2 = SS regression / SS total 

SS regression =  r2 SS total 

 

e.g. the value of r2 could simply indicate how good of fit between the two 

variance. If r=0.20, the r2 =0.04 and indicated SS regression only 4% weight power 

on SS total. 
 
 

Rank Data in Correlation 
 

If the variance was not in a normal distribution or don’t know the 

distribution or in a rank data, the rank correlation should be considered. 

 

Spearman Method  
 

    6d2    

   rs  = 1 -  

  n(n2 -1)  
 

where, d is the difference between the variance rank, n is number of “d” pairs. rs  

is the estimation coefficient for ps.  
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Example 5: Correlation coefficient of determination for rank data 
 

Suppose we have a set of data as follows: 
 

n X X Rank  Y Y Rank  d=XR-YR d2 

1 0.7 1  21.5 3  -2 4 

2 1.0 2  18.9 2  0 0 

3 1.7 3  14.4 1  2 4 

4 3.7 4  46.5 7  -3 9 

5 4.0 5  27.3 4  1 1 

6 5.1 6  64.6 9  -3 9 

7 5.5 7  46.3 6  1 1 

8 5.7 8  34.2 5  3 9 

9 5.9 9  77.6 10  -1 1 

10 10.0 10  55.1 8  2 4 

       sum 42 

 
 

1st Making the null hypothesis and setting the test confidence level: 
 
H0: Ps = 0, (No linear regression)  
H1: Ps ≠ 0,  

 = 0.05 
 
 

2nd Rank the X and Y as showed in the table above, the calculate the r value 

according to the following formula: 
 
 

    6d2             6x42 

   rs  = 1 -         = 1 -      =  0.745 

  n(n2 -1)        10(102-1) 
 
 
 

3rd Find the p value 
 

From the Rs -table, with n = 3, we find p<0.02; with  = 0.05 and  >p, we 

reject the H0 and have statistic significant confidence, with 95%, accepting 

the X-variable positive correlated with Y-variable.    
 
 

Correction for Approximation Error 
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Correction for continuity 
 

If there are many of the same rank (tie rank), the adjustment formula for r’s 

is needed as follows. 
 

     [(n³ - n)/6] – (Tx + Ty) - d2    

   r’s  =  

      [(n³ - n)/6] – 2Tx       [(n³ - n)/6] – 2Ty     

 

   Ty = (ty³ –ty)/ny 
 

   Tx = (tx³ –tx)/nx 
 
where, tx and ty are the number of the tie rank of variable X and Y respectively. 
 
 
 
 

Example 6: calculation of correction for approximation error 
 
 

Suppose the data in example 5 changed as follows: 
 

1. No. 1 to No.5 with the tie rank, then the average rank would be:  
(1+2+3+4+5)/5 =3; and t=5. 

 
2. No. 6 to No.8 with the tie rank, then the average rank would be:  

(6+7+8)/3 =7; and t=3. 
 

3. No. 9 to No.10 with the tie rank, then the average rank would be:  
(9+10)/2 =9.5; and t=2. 
 
nx = 12 (Total sample of X remains the same) 
Ty = 0 (No tie rank for variable Y) 

d2 = 33.5 (calculations was supposed)  
 

 

Therefore,  
Tx = (tx³ –tx)/nx = [(5³-5)+(3³-3)+(2³-2)] / 12 = 12.5 
 

 

     [(n³ - n)/6] – (Tx + Ty) - d2    

   r’s  =  



 142 

      [(n³ - n)/6] – 2Tx       [(n³ - n)/6] – 2Ty     

 
 

     [(10³ - 10)/6] – (12.5 + 0) – 33.5    
        =         = 0.783 

       [(10³ - 10)/6] – 2(12.5)    [(10³ - 10)/6] – 2(0)     

  
 

Find the p value 

 

From the Rs -table, with n = 10, we find 0.02>p>0.01; with  = 0.05 and  

>p, we reject the H0 and have statistic significant confidence, with 95%, 

accepting the X-variable positive correlated with Y-variable.    
 
 

Note: if we didn’t calculate the correction for approximation error, the r-

value would be: 
 

     6d2             6x33.5 

   rs  = 1 -         = 1 -      =  0.797 

  n(n2 -1)        10(102-1) 
 

From the Rs -table, with n = 10, we find 0.01>p>0.005; it would be quite 

difference with the r’s calculated by the correction for approximation error. 
 
 
 

Other cases to apply the linear regression in understanding the effect 
 

Effect of fertilizer on plant growths: 

In a study measuring the influence of different quantities of fertilizer on 

plant growth, the independent variable would be the amount of fertilizer 

used. The dependent variable would be the growth in height or mass of the 

plant. The controlled variables would be the type of plant, the type of 

fertilizer, the amount of sunlight the plant gets, the size of the pots, etc. 

 

Effect of drug dosage on symptom severity: 

In a study of how different doses of a drug affect the severity of symptoms, a 

researcher could compare the frequency and intensity of symptoms when 

different doses are administered. Here the independent variable is the dose 

and the dependent variable is the frequency/intensity of symptoms. 
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Effect of temperature on pigmentation: 

In measuring the amount of color removed from beetroot samples at 

different temperatures, temperature is the independent variable and amount 

of pigment removed is the dependent variable. 

 

Effect of sugar added in a coffee: 

The taste varies with the amount of sugar added in the coffee. Here, the 

sugar is the independent variable, while the taste is the dependent variable. 
 
 

Other remarks: 

 

The variables with no relationship should not use the regression equation or 

regression correlation. 

 

Before the analysis of regression, it may be draw a draft scatter point to test 

for understand the data. 

 

Confidence intervals 

The formulas given in the previous section allow one to calculate the point 

estimates of “a” and “b” -- that is, the coefficients of the regression line for 

the given set of data. However, those formulas don't tell us how precise the 

estimates are, i.e., how much the estimators “a” and “b” vary from sample to 

sample for the specified sample size. Confidence intervals were devised to 

give a plausible set of values to the estimates one might have if one repeated 

the experiment a very large number of times. 

 

The standard method of constructing confidence intervals for linear 

regression coefficients relies on the normality assumption, which is justified 

if either: 

 

1. the errors in the regression are normally distributed (the so-called 

classic regression assumption), or 

2. the number of observations n is sufficiently large, in which case the 

estimator is approximately normally distributed, or the case is justified 

by the central limit theorem. 
 

Mathematically, we can use the variable transformation to be rectification 

based on the data category, e.g. curve fitting with variance transformation:  
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Y=AB˟ (B>0) or lgY=a+bX. These methods could extend the scope of 

application in linear regressions and please refer the other relevant readings.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 10 
 
 

Multiply Linear Regression (MLR) 
 
 

What Is Multiple Linear Regression (MLR)? 
 

Multiple linear regression (MLR), also known simply as multiple regression, 

is a statistical technique that uses several explanatory variables to predict the 

outcome of a response variable. The goal of multiple linear regression 

(MLR) is to model the linear relationship between the explanatory 

(independent) variables and response (dependent) variable. 

 

 

In essence, multiple regression is the extension of ordinary least-squares 

(OLS) regression that involves more than one explanatory variable. 
 

KEY TAKEAWAYS 
 

1. Multiple linear regression (MLR), also known simply as multiple 

regression, is a statistical technique that uses several explanatory 

variables to predict the outcome of a response variable. 
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2. Multiple regression is an extension of linear (OLS) regression that 

uses just one explanatory variable. 

3. MLR is used extensively in econometrics and financial inference. 
 
 

What Multiple Linear Regression (MLR) Can Tell You 

 

Simple linear regression is a function that allows an analyst or statistician to 

make predictions about one variable based on the information that is known 

about another variable. Linear regression can only be used when one has two 

continuous variables - an independent variable and a dependent variable. 

The independent variable is the parameter that is used to calculate the 

dependent variable or outcome. A multiple regression model extends to 

several explanatory variables. 

 

The multiple regression model is based on the following assumptions: 

 

1. There is a linear relationship between the dependent variables and 

the independent variables. 

2. The independent variables are not too highly correlated with each 

other. “Yi” observations are selected independently and randomly 

from the population. 

3. Residuals should be normally distributed with a mean of 0 and 

variance σ. 

 

The coefficient of determination (R-squared) is a statistical metric that is 

used to measure how much of the variation in outcome can be explained by 

the variation in the independent variables. R2 always increases as more 

predictors are added to the MLR model even though the predictors may not 

be related to the outcome variable. 

 

R2 by itself can't thus be used to identify which predictors should be 

included in a model and which should be excluded. R2 can only be between 

0 and 1, where 0 indicates that the outcome cannot be predicted by any of 

the independent variables and 1 indicates that the outcome can be predicted 

without error from the independent variables. 

 

When interpreting the results of multiple regression, beta coefficients are 

valid while holding all other variables constant ("all else equal"). The output 
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from a multiple regression can be displayed horizontally as an equation, or 

vertically in table form. 
 
 

How to Use Multiple Linear Regression (MLR) 
 

As an example, an analyst may want to know how the movement of the 

market affects the price of ExxonMobil (XOM). In this case, their linear 

equation will have the value of the S&P 500 index as the independent 

variable, or predictor, and the price of XOM as the dependent variable. 

 

In reality, there are multiple factors that predict the outcome of an event. The 

price movement of ExxonMobil, for example, depends on more than just the 

performance of the overall market. Other predictors such as the price of oil, 

interest rates, and the price movement of oil futures can affect the price of 

XOM and stock prices of other oil companies. To understand a relationship 

in which more than two variables are present, multiple linear regression is 

used. 
 

Multiple linear regression (MLR) is used to determine a mathematical 

relationship among a number of random variables. In other terms, MLR 

examines how multiple independent variables are related to one dependent 

variable. Once each of the independent factors has been determined to 

predict the dependent variable, the information on the multiple variables can 

be used to create an accurate prediction on the level of effect they have on 

the outcome variable. The model creates a relationship in the form of a 

straight line (linear) that best approximates all the individual data points. 

 

Referring to the MLR equation above, in our example: 
 

yi = dependent variable - the price of XOM 

xi1 = interest rates 

xi2 = oil price 

xi3 = value of S&P 500 index 

xi4= price of oil futures 

B0 = y-intercept at time zero 

B1 = regression coefficient that measures a unit change in the dependent 

variable when xi1 changes - the change in XOM price when interest rates 

change 
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B2 = coefficient value that measures a unit change in the dependent variable 

when xi2 changes - the change in XOM price when oil prices change 
 

The least-squares estimates, B0, B1, B2, … Bp, are usually computed by 

statistical software. As many variables can be included in the regression 

model in which each independent variable is differentiated with a number - 

1,2, 3, 4...p. The multiple regression model allows an analyst to predict an 

outcome based on information provided on multiple explanatory variables. 

 

Still, the model is not always perfectly accurate as each data point can differ 

slightly from the outcome predicted by the model. The residual value, E, 

which is the difference between the actual outcome and the predicted 

outcome, is included in the model to account for such slight variations. 
 
 

The Difference Between Linear and Multiple Regression 
 

Ordinary linear squares (OLS) regression compares the response of a 

dependent variable given a change in some explanatory variables. However, 

it is rare that a dependent variable is explained by only one variable. In this 

case, an analyst uses multiple regression, which attempts to explain a 

dependent variable using more than one independent variable. Multiple 

regressions can be linear and nonlinear. 
 

Multiple regressions are based on the assumption that there is a linear 

relationship between both the dependent and independent variables. It also 

assumes no major correlation between the independent variables. 

 

Dependent and independent variables are variables in mathematical 

modeling, statistical modeling and experimental sciences. Dependent 

variables receive this name because, in an experiment, their values are 

studied under the supposition or hypothesis that they depend, by some law or 

rule (e.g., by a mathematical function), on the values of other variables. 

Independent variables, in turn, are not seen as depending on any other 

variable in the scope of the experiment in question; thus, even if the existing 

dependency is invertible (e.g., by finding the inverse function when it 

exists), the nomenclature is kept if the inverse dependency is not the object 

of study in the experiment. In this sense, some common independent 

variables are time, space, density, mass, fluid flow rate, and previous values 
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of some observed value of interest (e.g. human population size) to predict 

future values (the dependent variable). 

 

Of the two, it is always the dependent variable whose variation is being 

studied, by altering inputs, also known as regressors in a statistical context. 

In an experiment, any variable that the experimenter manipulates can be 

called an independent variable. Models and experiments test the effects that 

the independent variables have on the dependent variables. Sometimes, even 

if their influence is not of direct interest, independent variables may be 

included for other reasons, such as to account for their potential confounding 

effect. 

 
 

In an experiment, the variable manipulated by an experimenter is called an 

independent variable. The dependent variable is the event expected to 

change when the independent variable is manipulated. 

 

In data mining tools (for multivariate statistics and machine learning), the 

dependent variable is assigned a role as target variable (or in some tools as 

label attribute), while an independent variable may be assigned a role as 

regular variable. Known values for the target variable are provided for the 

training data set and test data set, but should be predicted for other data. The 

target variable is used in supervised learning algorithms but not in 

unsupervised learning. 
 
 
 
 

Multiple Linear Regression Equation 
 

In mathematical modeling, the dependent variable is studied to see if and 

how much it varies as the independent variables vary. In the multiple linear 

model:  
 
Y^= a + b1X1 + b2X2 +…+bnXn 
 
Where, Y^ (dependent variable) is the estimated value for Y-variance; X1, X2, … 
Xn are the X-variance  (independent variable); a is a coefficient (constant);   b1, 
b2,…bn are partial regression coefficient.                 
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e.g. in a local area, the 10-year-old children have showed their Vital 

Capacity (Y) with their Height (cm), (X1), and Weight (kg), (X2), as the 

following multiple regression equation: 
 
Y^ = - 0.5657 + 0.0050X1 + 0.0541X2 
 
Where, 
a = - 0.5657; b1 = 0.0050, it indicates that the Height (X1) increase 1cm and the 
Vital Capacity (Y^) would have 0.0050 increases of measurable effect in the 
groups of children, as the Weight (X2) remains in the same or excludes the 
effects of Weight (X2) factor. 
 

 

Multiple regression could measure or forecast the one factor (independent 

variable) on how much effects with another factors (dependent variable) 

respectively. 
 
 
 
 

Methods to set up multiple linear regression equation 
 

A major application of matrices is to represent linear transformations, that is, 

 
 

In mathematics, a matrix (plural matrices) is a rectangular array or table (see 

irregular matrix) of numbers, symbols, or expressions, arranged in rows and 

columns. Matrices are commonly written in box brackets or parentheses: 
 

 
 

The calculation is illustrated as follows: 
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Calculate the X1, X2, X3,  … Xn,  Y. 

Calculate the X2
1, X2

2, X2
3,  … X2n,  Y2. 

Calculate the X1Y, X2Y, X3Y,  … XnY. 
  
 

Example 1: How to set up the multiple linear regression equation 
 
Y^= a + b1X1 + b2X2 +…+bnXn 
 

Suppose we have a set of data: in a local area, the 10-year-old children have 

showed their Vital Capacity (Y) with their Height (cm), (X1), and Weight 

(kg), (X2), as the follows: 
 

 X1 (cm) X1
2 X2 (kg) X2

2 Y (L) Y2 X1 * X2 X1*Y X2*Y 

1 135.1 18252.0 32.0 1024.0 1.75 3.06 4323.2 236.4 56.0 

2 139.9 19572.0 30.4 924.2 2.00 4.00 4253.0 279.8 60.8 

3 163.6 26765.0 46.2 2134.4 2.75 7.56 7558.3 449.9 127.1 

4 146.5 21462.3 33.5 1122.3 2.50 6.25 4907.8 366.3 83.8 

5 156.2 24398.4 37.1 1376.4 2.75 7.56 5795.0 429.6 102.0 

6 156.4 24461.0 35.5 1260.3 2.00 4.00 5552.2 312.8 71.0 

7 167.8 28156.8 41.5 1722.3 2.75 7.56 6963.7 461.5 114.1 

8 149.7 22410.1 31.0 961.0 1.50 2.25 4640.7 224.6 46.5 
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9 145.0 21025.0 33.0 1089.0 2.50 6.25 4785.0 362.5 82.5 

10 148.5 22052.3 37.2 1383.8 2.25 5.06 5524.2 334.1 83.7 

11 165.5 27390.3 49.5 2450.3 3.00 9.00 8192.3 496.5 148.5 

12 135.0 18225.0 27.6 761.8 1.25 1.56 3726.0 168.8 34.5 

13 153.3 23500.9 41.0 1681.0 2.75 7.56 6285.3 421.6 112.8 

14 152.0 23104.0 32.0 1024.0 1.75 3.06 4864.0 266.0 56.0 

15 160.5 25760.3 47.2 2227.8 2.25 5.06 7575.6 361.1 106.2 

16 153.0 23409.0 32.0 1024.0 1.75 3.06 4896.0 267.8 56.0 

17 147.6 21785.8 40.5 1640.3 2.00 4.00 5977.8 295.2 81.0 

18 157.5 24806.3 43.3 1874.9 2.25 5.06 6819.8 354.4 97.4 

19 155.1 24056.0 44.7 1998.1 2.75 7.56 6933.0 426.5 122.9 

20 160.5 25760.3 37.5 1406.3 2.00 4.00 6018.8 321.0 75.0 

21 143.0 20449.0 31.5 992.3 1.75 3.06 4504.5 250.3 55.1 

22 149.4 22320.4 33.9 1149.2 2.25 5.06 5064.7 336.2 76.3 

23 160.8 25856.6 40.4 1632.2 2.75 7.56 6496.3 442.2 111.1 

24 159.0 25281.0 38.5 1482.3 2.50 6.25 6121.5 397.5 96.3 

25 158.2 25027.2 37.5 1406.3 2.00 4.00 5932.5 316.4 75.0 

26 150.0 22500.0 36.0 1296.0 1.75 3.06 5400.0 262.5 63.0 

27 144.5 20880.3 34.7 1204.1 2.25 5.06 5014.2 325.1 78.1 

28 154.6 23901.2 39.5 1560.3 2.50 6.25 6106.7 386.5 98.8 

29 156.5 24492.3 32.0 1024.0 1.75 3.06 5008.0 273.9 56.0 

(n=29)          

Total:  4424.7 677060.4 1076.7 40832.4 64.00 146.88 165239.8 9826.7 2427.3 

Mean 152.6  37.1  2.21     

 
 
 

1st Calculations and summaries: 
 

X1 = 4427.7  X2 = 1076.7  Y= 64. 
 

X2
1 = 677060.4 X2

2  = 40832.4 Y2 = 146.88 
 

X1X2= 165239.8 X1Y = 9826.7 X2Y = 2427.3 
 
 

2nd Use the following matrix methods to calculate: 
 

      
 
 
 

For the case of two impendent variances, its matrix would be as follows: 
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  n   X1  X2      Y 

A =   X1  X2
1  X1X2   B =   X1Y 

  X2  X1X2  X2
2        X2Y 

 
 
Place the number to the matrix as follows: 
 
  29  4427.7 1076.7     64 
A =   4424.7 677060.4 165239.8  B =   9826.7 
  1076.7 165239.8 40832.4     2427.3 
 
 

After several calculations*, the inverse matrix of A would be as follows: 
 
 
  15.632356 -0.126109   0.098131 
1 / A =   - 0.126109  0.001137 - 0.001275  
    0.098131 -0.001275   0.002597 
 
 

and 
 
     a       - 0.565664 
b =       b1       =   (1/A) x B  =      0.005017 
     b2       0.054061 
 
 

The multiple regression equation: 
 

Y^ = - 0.5657 + 0.0050X1 + 0.0541X2 

 

 

*Note: the following figure showed a simple method on how to make a 

change between A and 1/A. 
 
 

In this case, the calculation in details is illustrated as follows: 
 



 153 

1st 

 
2nd & 3rd  

 
 

The steps of calculation:  

 

1st, Calculate the number or value in each cell of the table by matrix 

methods, as it illustrated in the number from yellow table to the number in 

light grey table; 

 

2nd, Multiple the number in the light grey table by the number in yellow 

table, one by one, in the first row by the order respectively; 

 

3rd, Add the three numbers in the small light grey table to be:  21865007.1; 

 

Finally, Use the number in the light green table divided by the number of 

21865007.1, one by one, and fill out each cell of the table with the 

calculating results by the order respectively; The numbers in the new light 

green table are the inverse matrix of A (or 1/A). 
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The other methods for the multiple linear regression equation: 
 

 

 
 
 

Multiple Linear Regression Analysis 
 

Multiple regression analysis is based on the multiple linear regression 

equation. The linear hypnosis test is testing the u (error term). 
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 (Y – Ym) 2 =  (Y^ -Ym) 2 +  (Y-Y^) 2 
 
 
      SS total   = SS regression + SS residual 
 
 

SS total = Lyy = (Y - Ym)2 = Y2 – (Y)2/n  
 

SS regression =  (Y^ -Ym) 2 = b’ B – (Y)2/n 
 
SS residual = SS total – SS regression  
 
 
 

Example 2: Methods of Analysis of Variance (ANOV) 
 

Suppose we have the data list in example 1 above. 
 
 

1st Making the null hypothesis and setting the test confidence level: 
 
H0: b1 = 0, b2 = 0, …  bn = 0   (No multiple linear regression)  
H1: b1 ≠ 0, b2 ≠ 0, … bn ≠ 0, 
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 = 0.05 
 

2nd From the case above, to calculate it, do the following: 
 
 SS regression / V regression 
F =        
    SS residual / (n-m-1) 
  
(Note: the formula is the similar with F-test in thesimple linear regression) 
 
 

SS total = Lyy = (Y - Ym)2 = Y2 – (Y)2/n = 146.88 – (64) 2 /29 = 5.6336 
 
 

SS regression =  (Y^ -Ym) 2 = b’ B – (Y)2/n  
 
        64 
= (-0.565664    0.005017    0.054061)    9826.65    – (64) 2 /29 = 3.0800 
        2427.325 
 
SS residual = SS total – SS regression = 5.6336 – 3.0800 = 2.5536 
 
 
V regression = 2; V residual = (29 – 2 – 1) = 26 
 
 
 SS regression / V regression  3.0800 / 2 
F =        =   = 15.680 
    SS residual / (n-m-1)  2.5536 / 26   
 
 

3rd Find the p value 

 

From the F -table, with v = 26 and v =2, we find 0.01>p>; with  = 0.05 and 

 >p, we reject the H0 and have statistic significant confidence, with 95%, 

accepting the effects of X1-variable and X2-variable correlated with Y-

variable in the multiple linear regression.    
 
 
 

Coefficient of Partial Regression 
 

If the F-test above indicated that the multiple regression is confidential 

existed, the further test for partial regression coefficient could be conducted. 
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The purpose of the test is determining how a factor to be relevant. 
 
 
 

Example 3: Calculation and hypothesis of partial regression coefficient 
 
 

Suppose we have the data list in example 1 above. 

 

1st Making the null hypothesis and setting the test confidence level: 

 

The hypnosis test for b1, b2 (t-test) 
 
H0: b1 = 0, b2 = 0  
H1: b1 ≠ 0, b2 ≠ 0 

 = 0.05 
  
 

2nd To calculate it, do the following: 
 
             bi – bt 
ti =   

    SS residual / (n-m-1)   x    Cii 
 
where, Cii is the i-row and i-column of matrix A.  
 
SS residual = 2.5536.   C11 = 0.001137,    bt = 0 (H0) 
 
 
 
                       b1         0.0050 
t1 =              =         

           SS residual / (n-m-1)  x  Cii    2.5536 / (29-2-1) x   0.001137 

 
    = 0.473 
 
 
                         b2         0.0541 
t2 =              =         

          SS residual / (n-m-1)  x   Cii    2.5536 / (29-2-1) x   0.002597 

 
    = 3.387 
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V residual = 26, t-table, t1: p>0.05; t2: 0.005>p>0.002.  = 0.05, not refuse the H0,1 

of b1=0; and refuse the H0,2 and accept H1,2. 

 

3rd Find the p value 
 

From the t -table, with v = 26, we find t1: p1>0.05; t2: 0.005>p2>0.002; with  = 

0.05 and  >p1, we do not reject the H0(b1) and reject H0(b2). It means that we 
have statistic significant confidence, with 95%, accepting the no-effects of X1-
variable correlated with Y-variable; and the effects of X2-variable correlated with 
Y-variable in multiple linear regression.  
 
 

Example 4: Calculation and test the simple linear regression coefficient 
 

Further, we can exclude the height variance (X1) and use simple linear 

regression to test the correlation of the weight variance (X2) with variable 

(Y). 

 

The methods applied are the similar as illustrated in the simple linear 

regression. 

 

Sum up the calculation as follows: 
 

n=29, X2 = 1076.7, X2
2  = 40832.4, Y= 64, X2Y = 2427.3, Y2 = 146.88. 

 

Lxx = L22 =X2
2  - (X2)2/n = 40832.4 – (1076.7)2/29 = 857.1179 

 

Lxy = L2y =X2Y  - (X2Y)/n = 2427.325 – (1076.7)(64)/29 = 51.1595 
 
Xm = X2m = 1076.7/29 =37.1276 
 
Ym = 64/29 =2.2069 
 
b = Lxy / Lxx =  51.1595/857.1179 = 0.0597 
 
a = Ym - bXm = 2.2069 – (0.0597)(37.1276) = -0.0096 
 

Therefore, the equation is:  Y^ = -0.0096 + 0.0597X2 

 
 

To Test the b coefficient 

 

1st Making the null hypothesis and setting the test confidence level: 
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H0: b = 0  
H1: b ≠ 0 

 = 0.05 
 
 

2nd To calculate it, do the following: 
 

SS total = Lyy = (Y - Ym)2 = Y2 – (Y)2/n = 146.88 – (64) 2 /29 = 5.6336 
 
SS regression = Lxy / Lxx = (51.1595)2 / 857.1179 = 3.0536 
 
SS residual = SS total – SS regression = 5.6336 – 3.0536 = 2.5800 
 
V residual = n - 2 = 29 – 2= 27 
 
 

 

Syx =   SS residual / n   =   2.5800 / 27     = 0.3091 

 
 
  
        b                   b    0.0597 
t =           =         =          = 5.655  

       Sb Syx   /   Lxx  0.3091 /  857.1179 

 
 

3rd Find the p value 
 

From the t -table, with v = 27, we find 0.001>p; with  = 0.05 and  >p, we reject 
H0. It means that we have statistic significant confidence, with 95%, accepting 
the effects of X2-variable correlated with Y-variable in the linear regression. 
 
 
 

Correlation of Multiple Linear 
 

Coefficient of Multiple Correlation (R) 
 

In statistics, the coefficient of multiple correlation is a measure of how well 

a given variable can be predicted using a linear function of a set of other 

variables. It is the correlation between the variable's values and the best 

predictions that can be computed linearly from the predictive variables. 
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The coefficient of multiple correlation takes values between .00 and 1.00; a 

higher value indicates a high predictability of the dependent variable from 

the independent variables, with a value of 1 indicating that the predictions 

are exactly correct and a value of 0 indicating that no linear combination of 

the independent variables is a better predictor than is the fixed mean of the 

dependent variable. 
 

The coefficient of multiple correlation is known as the square root of the 

coefficient of determination, but under the particular assumptions that an 

intercept is included and that the best possible linear predictors are used, 

whereas the coefficient of determination is defined for more general cases, 

including those of nonlinear prediction and those in which the predicted 

values have not been derived from a model-fitting procedure. 

 

The coefficient of multiple correlation, denoted R, is a scalar that is defined 

as the Pearson correlation coefficient between the predicted and the actual 

values of the dependent variable in a linear regression model that includes an 

intercept. 
 
 
 
 SS regression   SS residual 

R2 =    = 1 -   

    SS total      SS total 
 
 
 
  SS regression   SS residual 

R =    =   1 -   

          SS total       SS total 

 
 
 

Example 5: Test of coefficient of multiple correlation 
 

In case above, we calculate it as follows: 
 

SS regression =  (Y^ -Ym) 2 = b’ B – (Y)2/n  
 
        64 
= (-0.565664    0.005017    0.054061)    9826.65    – (64) 2 /29 = 3.0800 
        2427.325 
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SS total = Lyy = (Y - Ym)2 = Y2 – (Y)2/n = 146.88 – (64) 2 /29 = 5.6336 
 
 
 
  SS regression  3.0800 

R =    =        =  0.7394 

          SS total    5.6336 

 
 
 

Test of Coefficient of Multiple Correlations 
 

1st Making the null hypothesis and setting the test confidence level: 
 
H0: C = 0 (Coefficient of multiple correlation =0) 
H1: C ≠ 0 

 = 0.05 
 
 

2nd To calculate it, do the following: 
 
 
F-test 
 

    R2  (n-m-1)       (0.7394)2         29–2-1 

F =      x         =    x      = 15.679  

 1 - R2      m  1 - (0.7394)2            2   

 
 
 

3rd Find the p value 
 

From the F -table, with v = 2, we find 0.01>p; with  = 0.05 and  >p, we 

reject H0. It means that we have statistic significant confidence, with 95%, 

accepting the correlation effects in the linear regression. 
 
 
 

Coefficient of Partial Correlation  
 

 

In probability theory and statistics, partial correlation measures the degree of 

association between two random variables, with the effect of a set of 

controlling random variables removed. If we are interested in finding to 
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what extent there is a numerical relationship between two variables of 

interest, using their correlation coefficient will give misleading results if 

there is another, confounding, variable that is numerically related to both 

variables of interest. This misleading information can be avoided by 

controlling for the confounding variable, which is done by computing the 

partial correlation coefficient.  

 

In probability theory and statistics, partial correlation measures the degree of 

association between two random variables, with the effect of a set of 

controlling random variables removed. 
 

If we are interested in finding to what extent there is a numerical relationship 

between two variables of interest, using their correlation coefficient will give 

misleading results if there is another, confounding, variable that is 

numerically related to both variables of interest. This misleading information 

can be avoided by controlling for the confounding variable, which is done by 

computing the partial correlation coefficient. This is precisely the motivation 

for including other right-side variables in a multiple regression; but while 

multiple regression gives unbiased results for the effect size, it does not give 

a numerical value of a measure of the strength of the relationship between 

the two variables of interest. 

 

For example, if we have economic data on the consumption, income, and 

wealth of various individuals and we wish to see if there is a relationship 

between consumption and income, failing to control for wealth when 

computing a correlation coefficient between consumption and income would 

give a misleading result, since income might be numerically related to 

wealth which in turn might be numerically related to consumption; a 

measured correlation between consumption and income might actually be 

contaminated by these other correlations. The use of a partial correlation 

avoids this problem. 
 

Like the correlation coefficient, the partial correlation coefficient takes on a 

value in the range from -1 to 1. The value -1 conveys a perfect negative 

correlation controlling for some variables (that is, an exact linear 

relationship in which higher values of one variable are associated with lower 

values of the other); the value 1 conveys a perfect positive linear 

relationship, and the value 0 conveys that there is no linear relationship. 
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The partial correlation coincides with the conditional correlation if the 

random variables are jointly distributed as the multivariate normal, other 

elliptical, multivariate hypergeometric, multivariate negative 

hypergeometric, multinomial or Dirichlet distribution, but not in general 

otherwise. 
 
 

Semipartial Correlation (Part Correlation) 
 

The semipartial (or part) correlation statistic is similar to the partial 

correlation statistic. Both compare variations of two variables after certain 

factors are controlled for, but to calculate the semipartial correlation one 

holds the third variable constant for either X or Y but not both, whereas for 

the partial correlation one holds the third variable constant for both. The 

semipartial correlation compares the unique variation of one variable 

(having removed variation associated with the Z variable(s)), with the 

unfiltered variation of the other, while the partial correlation compares the 

unique variation of one variable to the unique variation of the other. 

 

The semipartial (or part) correlation can be viewed as more practically 

relevant "because it is scaled to (i.e., relative to) the total variability in the 

dependent (response) variable." Conversely, it is less theoretically useful 

because it is less precise about the role of the unique contribution of the 

independent variable. 

 

The absolute value of the semipartial correlation of X with Y is always less 

than or equal to that of the partial correlation of X with Y. The reason is this: 

Suppose the correlation of X with Z has been removed from X, giving the 

residual vector ex . In computing the semipartial correlation, Y still contains 

both unique variance and variance due to its association with Z. But ex , 

being uncorrelated with Z, can only explain some of the unique part of the 

variance of Y and not the part related to Z. In contrast, with the partial 

correlation, only ey (the part of the variance of Y that is unrelated to Z) is to 

be explained, so there is less variance of the type that ex cannot explain. 
 
 

Example 6: Calculation of Coefficient of Partial Correlation 
 

In case above, we calculate it as follows: 
 
n = 29 
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X1 = 4427.7  X2 = 1076.7  Y= 64. 
 

X2
1 = 677060.4 X2

2  = 40832.4 Y2 = 146.88 
 

X1X2= 165239.8 X1Y = 9826.7 X2Y = 2427.3 
 
 

L11 = X2
1 – (X1) 2 / n = 677060.4 – (4427.7)2 /29 =1957.9531 

 

L22 = X2
2 – (X2) 2 / n = 40832.4 – (1076.7)2 /29 =857.1179 

Lyy = Y2 – (Y)2/n = 146.88 – (64) 2 /29 = 5.6336 (=SS total) 
 

L12 = X1X2 – (X1X2) / n = 165239.8 – (4427.7) (1076.7) /29 =961.3693 
 

Ly1 =  X1Y – (X1Y)/n = 9826.7– (64) (4427.7) /29 = 61.7948 
 

Ly2 =  X2Y – (X2Y)/n = 2427.3 – (64) (1076.7) /29 = 51.1595 
 
 
 

r12 = L12 /  L11 L22   = 961.3693 /   1957.9531 x 857.1179     =  0.7421 

 

ry1 = Ly1 /  Lyy L11   =  61.7948 /  5.6336 x 1957.9531   =  0.5884 

 

ry2 = Ly2 /  Lyy L22   = 51.1595 /   5.6336 x 857.1179     =  0.7362 

 
 
 

r12.y = ( r12  - ry1 ry2) / (1 – r2
y1)(1- r2

y2)   
 

        = (0.7421 – 0.5884x0.7362) /(1 – 0.58842) (1 – 0.73622) = 0.5645 

 
 

ry1.2 = ( ry1  - r12 ry2) / (1 – r2
12)(1- r2

y2)   
 

        = (0.5884 – 0.7421x0.7362) /(1 – 0.74212) (1 – 0.73622) = 0.0927 

 
 

ry2.1 = ( ry2  - ry1 r12) / (1 – r2
y1)(1- r2

12)   
 

        = (0.7362 – 0.5884x0.7421) /(1 – 0.58842) (1 – 0.74212) = 0.5527 
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Example 7: Test of Coefficient of Partial Correlation  
 
 

1st Making the null hypothesis and setting the test confidence level: 
 
H0: p12.y = 0, py2.1 = 0, 
H1: p12.y ≠ 0, py2.1 ≠ 0, 

 = 0.05 
 

2nd To calculate it, do the following: 
 

n=29, m=2, v= 29 -2-1=26;  ry1.2 = 0.0927, ry2.1 = 0.5527 

 

t1 = ry1.2 / (1 – r2
y12) x n-m-1  =0.0927 / (1–0.0927) 2 x29-2-1 = 0.475   

            

t2 = ry2.1 / (1 – r2
y21) x n-m-1  =0.5527 / (1–0.5527) 2 x29-2-1 = 3.382  

3rd Find the p value 
 

From the t -table, with v = 26, we find t1: p>0.50;  = 0.05, not reject the H0 of 

p12.y = 0; t2: 0.002>p>0.001;  = 0.05, reject the H0 of py2.1 = 0.  

It means that we have statistic significant confidence, with 95%, accepting the 
correlation effects of X2-variable with Y-variable in the linear regression when the 
X1-variable remains the same level. 
 
 

The results of the coefficient correlation test is very similar with the 

coefficient regression test illustrated before, as they have the same set of 

data being tested; but one is for correlation and one is for regression.  

 

The summary of the correlation and partial correlation was list on the 

following table: 
 
Variance Coefficient of Multiple Correlation Coefficient of Partial Correlation 

X1 (cm) 0.5884 0.0927 

X2 (kg) 0.7362 0.5527 

 
 

Though the Coefficient of Multiply Correlation indicated that there is the 

correlation among the variance, the Coefficient of Partial Correlation 
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indicated that the X2-indepent-variance has the linear regression with Y-

dependent-variance, when X1-indepent-variance is fixed. 
 

The examples are enabling you to compare the predicted values with the 

actual values. Not very surprisingly, the performance of the model on the 

training data looks quite convincing. In a real-world application, you would 

choose a setup with a hold-out set or cross-validation to determine the actual 

model performance. An actual one could be as an attractive model as the 

following graphs. 
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